題目列表(包括答案和解析)
已知二次函數
的二次項系數為
,且不等式
的解集為
,
(1)若方程
有兩個相等的根,求
的解析式;
(2)若
的最大值為正數,求
的取值范圍.
【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),
設出二次函數的解析式,然后利用判別式得到a的值。
第二問中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程![]()
②
∵方程②有兩個相等的根,
∴
,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:![]()
(2)由![]()
![]()
![]()
由
解得:
![]()
故當f(x)的最大值為正數時,實數a的取值范圍是![]()
已知遞增等差數列
滿足:
,且
成等比數列.
(1)求數列
的通項公式
;
(2)若不等式
對任意
恒成立,試猜想出實數
的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列
公差為
,
由題意可知
,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價于
,
當
時,
;當
時,
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數學歸納法.
當
時,
,成立.
假設當
時,不等式
成立,
當
時,
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調性證明.
要證 ![]()
只要證
,
設數列
的通項公式
, …………10分
, …………12分
所以對
,都有
,可知數列
為單調遞減數列.
而
,所以
恒成立,
故
的最小值為
.
已知
,函數![]()
(1)當
時,求函數
在點(1,
)的切線方程;
(2)求函數
在[-1,1]的極值;
(3)若在
上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中
,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設
,![]()
對
求導,得![]()
∵
,
![]()
∴
在區間
上為增函數,則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數
的取值范圍是(![]()
,
)
⊙O1和⊙O2的極坐標方程分別為
,
.
⑴把⊙O1和⊙O2的極坐標方程化為直角坐標方程;
⑵求經過⊙O1,⊙O2交點的直線的直角坐標方程.
【解析】本試題主要是考查了極坐標的返程和直角坐標方程的轉化和簡單的圓冤啊位置關系的運用
(1)中,借助于公式
,
,將極坐標方程化為普通方程即可。
(2)中,根據上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(I)
,
,由
得
.所以
.
即
為⊙O1的直角坐標方程.
同理
為⊙O2的直角坐標方程.
(II)解法一:由
解得
,![]()
即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標方程為y=-x.
解法二: 由
,兩式相減得-4x-4y=0,即過交點的直線的直角坐標方程為y=-x
已知函數
.]
(1)求函數
的最小值和最小正周期;
(2)設
的內角
、
、
的對邊分別為
,
,
,且
,
,
若
,求
,
的值.
【解析】第一問利用![]()
得打周期和最值
第二問
,由正弦定理,得
,①
由余弦定理,得
,即
,②
由①②解得![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com