題目列表(包括答案和解析)
已知函數
,
.
(1)設
是函數
的一個零點,求
的值;
(2)求函數
的單調遞增區間.
【解析】第一問利用題設知![]()
.因為
是函數
的一個零點,所以![]()
即
(![]()
所以![]()
第二問![]()
![]()
![]()
當
,即
(
)時,
函數
是增函數,
故函數
的單調遞增區間是
(
)
設函數
.
(Ⅰ) 當
時,求
的單調區間;
(Ⅱ) 若
在
上的最大值為
,求
的值.
【解析】第一問中利用函數
的定義域為(0,2),
.
當a=1時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
第二問中,利用當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數
的定義域為(0,2),
.
(1)當
時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
(2)當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
某省環保研究所對市中心每天環境放射性污染情況進行調查研究后,發現一天中環境綜合放射性污染指數
與時刻
(時) 的關系為
,其中
是與氣象有關的參數,且
.
(1)令
,
,寫出該函數的單調區間,并選擇其中一種情形進行證明;
(2)若用每天
的最大值作為當天的綜合放射性污染指數,并記作
,求
;
(3)省政府規定,每天的綜合放射性污染指數不得超過2,試問目前市中心的綜合放射性污染指數是否超標?
【解析】第一問利用定義法求證單調性,并判定結論。
第二問(2)由函數的單調性知
,
∴
,即t的取值范圍是
.
當
時,記![]()
則
∵
在
上單調遞減,在
上單調遞增,
第三問因為當且僅當
時,
.
故當
時不超標,當
時超標.
(本小題滿分12分)已知函數![]()
(I)若函數
在區間
上存在極值,求實數a的取值范圍;
(II)當
時,不等式
恒成立,求實數k的取值范圍.
(Ⅲ)求證:解:(1)
,其定義域為
,則
令
,
則
,
當
時,
;當
時,![]()
在(0,1)上單調遞增,在
上單調遞減,
即當
時,函數
取得極大值. (3分)
函數
在區間
上存在極值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,則
,
,即
在
上單調遞增, (7分)
,從而
,故
在
上單調遞增, (7分)
(8分)
(3)由(2)知,當
時,
恒成立,即
,
令
,則
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當
時
單調遞減;當
時
單調遞增,故當
時,
取最小值![]()
于是對一切
恒成立,當且僅當
. ①
令
則![]()
當
時,
單調遞增;當
時,
單調遞減.
故當
時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出
取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com