題目列表(包括答案和解析)
袋子中裝有大小形狀完全相同的m個紅球和n個白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個球,取出的2個球是同色的概率等于取出的2個球是異色的概率.
(Ⅰ) 求m,n的值;
(Ⅱ) 從袋子中任取3個球,設取到紅球的個數為
,求
的分布列與數學期望.
【解析】第一問中利用
,解得m=6,n=3.
第二問中,
的取值為0,1,2,3. P(
=0)=
, P(
=1)= ![]()
P(
=2)=
, P(
=3)= ![]()
得到分布列和期望值
解:(I)據題意得到
解得m=6,n=3.
(II)
的取值為0,1,2,3.
P(
=0)=
, P(
=1)= ![]()
P(
=2)=
, P(
=3)= ![]()
的分布列為
![]()
所以E
=2
如圖,
,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出
、
和
之間的等量關系,以及
、
和
之間的等量關系;
(2)求證:
(
);
(3)設
,對所有
,
恒成立,求實數
的取值范圍.
![]()
【解析】第一問利用有
,
得到
第二問證明:①當
時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得![]()
第三問
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
![]()
解:(1)依題意,有
,
,………………4分
(2)證明:①當
時,可求得
,命題成立;
……………2分
②假設當
時,命題成立,即有
,……………………1分
則當
時,由歸納假設及
,
得
.
即![]()
解得
(
不合題意,舍去)
即當
時,命題成立. …………………………………………4分
綜上所述,對所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
.……………2分
由題意,有![]()
.
所以,![]()
D
[解析] 依題意得0<a<1,于是由f(1-
)>1得loga(1-
)>logaa,0<1-
<a,由此解得1<x<
,因此不等式f(1-
)>1的解集是(1,
),選D.
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
![]()
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設平面PCD的法向量
,
則
,即
.不防設
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設點E的坐標為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因為
,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
設函數f(x)=
在[1,+∞
上為增函數.
(1)求正實數a的取值范圍;
(2)比較
的大小,說明理由;
(3)求證:
(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:
,依題意得:
≥0對x∈[1,+∞
恒成立
∴ax-1≥0對x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上為增函數,
∴n≥2時:f(
)=
(3) ∵
∴![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com