【題目】如圖是一座人行天橋的引橋部分的示意圖,上橋通道由兩段互相平行并且與地面成37°角的樓梯AD、 BE和一段水平平臺(tái)DE構(gòu)成.已知天橋高度BC≈4.8米,引橋水平跨度AC=8米.
(1)求水平平臺(tái)DE的長(zhǎng)度;
(2)若與地面垂直的平臺(tái)立枉MN的高度為3米,求兩段樓梯AD與BE的長(zhǎng)度之比.
(參考:sin37°=0.60,cos37°=0.80,tan37°=0.75)
![]()
【答案】(1)DE=1.6;(2)AD:BE=5:3.
【解析】(1)延長(zhǎng)BE交AC于F,∠BFC=∠DAC=37°
則BC/FC=tan37°,∴FC=BC/tan37°=4.8/0.75=6.4米
四邊形ADEF為平行四邊形,DE=AF=AC-FC=8-6.4=1.6米
(2)過(guò)D作DG⊥AC,垂足為G,則DG=MN
DG/AD=sin37°,∴AD=DG/sin37°=3/0.6=5米
BC/BF=sin37°,∴BF=BC/sin37°=4.8/0.6=8米
BE=BF-EF=BE-AD=8-5=3米
∴ AD:BE=5:3
利用解直角三角形求解
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P 為平行四邊形 ABCD 內(nèi)一點(diǎn),PB=PC,∠BPC=90°,∠PAB=75°,若 AB=11
,PD=14,則 PA 的長(zhǎng)為_______________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(1,0),(0,1),(﹣1,0).一個(gè)電動(dòng)玩具從坐標(biāo)原點(diǎn)O出發(fā),第一次跳躍到點(diǎn)P1.使得點(diǎn)P1與點(diǎn)O關(guān)于點(diǎn)A成中心對(duì)稱(chēng);第二次跳躍到點(diǎn)P2,使得點(diǎn)P2與點(diǎn)P1關(guān)于點(diǎn)B成中心對(duì)稱(chēng);第三次跳躍到點(diǎn)P3,使得點(diǎn)P3與點(diǎn)P2關(guān)于點(diǎn)C成中心對(duì)稱(chēng);第四次跳躍到點(diǎn)P4,使得點(diǎn)P4與點(diǎn)P3關(guān)于點(diǎn)A成中心對(duì)稱(chēng);第五次跳躍到點(diǎn)P5,使得點(diǎn)P5與點(diǎn)P4關(guān)于點(diǎn)B成中心對(duì)稱(chēng);…照此規(guī)律重復(fù)下去,則點(diǎn)
的坐標(biāo)為_______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是AB的中點(diǎn),DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,則AF=________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)C為線(xiàn)段AB上任意一點(diǎn)(不與點(diǎn)A、B重合),分別以AC、BC為一腰在AB的同側(cè)作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,連接AE交CD于點(diǎn)M,連接BD交CE于點(diǎn)N,AE與BD交于點(diǎn)P,連接CP.
(1)線(xiàn)段AE與DB的數(shù)量關(guān)系為 ;請(qǐng)直接寫(xiě)出∠APD= ;
(2)將△BCE繞點(diǎn)C旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,探究線(xiàn)段AE與DB的數(shù)量關(guān)系,并說(shuō)明理由;求出此時(shí)∠APD的度數(shù);
(3)在(2)的條件下求證:∠APC=∠BPC.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形
和
都是正方形,點(diǎn)
在
邊上,點(diǎn)
在對(duì)角線(xiàn)
上,若
,則
的面積是( )
![]()
A.6B.8C.9D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOC和∠BOC,OD平分∠BOC,OE平分∠AOC.
(1)請(qǐng)寫(xiě)出一對(duì)相等的角;
(2)若∠AOC在∠BOC的外部,且∠AOB=120°,如圖,其他條件不變,求∠EOD的度數(shù).從結(jié)果你能看出∠EOD與∠AOB有什么數(shù)量關(guān)系嗎?
(3)若∠AOC=α,∠BOC=β(α,β都大于0°且小于180°,且α<β),其他條件不變,試求∠EOD的度數(shù)(結(jié)果用含α,β的代數(shù)式表示).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,以AB為直徑的⊙O分別交BC、AC于點(diǎn)D、E,且點(diǎn)D為BC的中點(diǎn).
(1)求證:△ABC為等邊三角形;
(2)求DE的長(zhǎng);
(3)在線(xiàn)段AB的延長(zhǎng)線(xiàn)上是否存在一點(diǎn)P,使△PBD≌△AED?若存在,請(qǐng)求出PB的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在
中,
,
,以
為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交
、
于點(diǎn)
和
,再分別以
、
為圓心,大于
的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)
,連結(jié)
并延長(zhǎng)交
于點(diǎn)
,則下列說(shuō)法中正確的個(gè)數(shù)是( )
①
是
的平分線(xiàn);②
;③點(diǎn)
在
的垂直平分線(xiàn)上;④![]()
![]()
A.1B.2C.3D.4
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com