【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發現,當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結DB,過點D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=S△ACD+S△ABC=
b2+
ab.
又∵S四邊形ADCB=S△ADB+S△DCB=
c2+
a(b﹣a)
∴
b2+
ab=
c2+
a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 . ![]()
科目:初中數學 來源: 題型:
【題目】如圖,港口B位于港口O正西方向120海里處,小島C位于港口O北偏西60°的方向.一艘科學考察船從港口O出發,沿北偏西30°的OA方向以20海里/小時的速度駛離港口O.同時一艘快艇從港口B出發,沿北偏東30°的方向以60海里/小時的速度駛向小島C,在小島C用1小時裝補給物資后,立即按原來的速度給考察船送去.
(1)快艇從港口B到小島C需要多少時間?
(2)快艇從小島C出發后最少需要多少時間才能和考察船相遇?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明要測量河內小島B到河邊公路AD的距離,在點A處測得∠BAD=37°,沿AD方向前進150米到達點C,測得∠BCD=45°. 求小島B到河邊公路AD的距離.
(參考數據:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,已知⊙O的半徑為1,菱形ABCD的三個頂點A、B、D在⊙O上,且CD與⊙O相切.
(1)求證:BC與⊙O相切;
(2)求陰影部分面積.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數軸的原點為0,點A、B、C是數軸上的三點,點B對應的數位1,AB=6,BC=2,動點P、Q同時從A、C出發,分別以每秒2個長度單位和每秒1個長度單位的速度沿數軸正方向運動.設運動時間為t秒(t>0) ![]()
(1)求點A、C分別對應的數;
(2)求點P、Q分別對應的數(用含t的式子表示)
(3)試問當t為何值時,OP=OQ?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,矩形ABCD的面積為128cm2 , 它的兩條對角線交于點O1 , 以AB、AO1為兩邊鄰作平行四邊形ABC1O1 , 平行四邊形ABC1O1的對角線交于點O2 , 同樣以AB、AO2為兩鄰邊作平行四邊形ABC2O2 , …,依此類推,則平行四邊形ABC7O7的面積為 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】農民張大伯因病住院,手術費為a元,其它費用為b元.由于參加農村合作醫療,
手術費報銷85%,其它費用報銷60%,則張大伯此次住院可報銷 ▲ 元.(用代數式表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com