【題目】如圖,在直角坐標(biāo)系中,拋物線
與y軸交于點(diǎn)D(0,3).
![]()
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
(3)已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過點(diǎn)P作PE⊥y軸,垂足為E,連結(jié)BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r的⊙P,既與拋物線的對稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.
【答案】(1)c=3;(2)
;(3)①S=-x2+3x=-(x-
)2+
(1<x<3);當(dāng)x=
時(shí),S取得最大值,最大值為
;②存在點(diǎn)P1(
),或P2(
),此時(shí)r1=
;點(diǎn)P3(
),或P4(
),此時(shí)r2=
,理由見解析.
【解析】
(1)將點(diǎn)D(0,3)直接代入解析式即可;
(2)先求出頂點(diǎn)C坐標(biāo)為(1,4),以及與x軸的交點(diǎn)坐標(biāo),即令y=0時(shí),得到點(diǎn)B(3,0)代入一次函數(shù)解析式即可求得答案;
(3)根據(jù)S=
PE·OE,利用P點(diǎn)在線段BC上,可表示出PE,OE,得到S=
,變形為頂點(diǎn)式后求出最大值即可.第②小問,根據(jù)兩圓內(nèi)切與外切進(jìn)行分類討論,分別用r表示出CQ,PQ,CP的長度,再利用勾股定理即可求出r長度和P點(diǎn)坐標(biāo).
解:(1)∵將D(0,3)代入解析式
∴c=3
(2)由(1)知拋物線為:
y=-x2+2x+3,配方得y=-(x-1)2+4
∴頂點(diǎn)C坐標(biāo)為(1,4)
令y=0,得x1=-1,x2=3
∴ B(3,0)
設(shè)直線BC解析式為:
(
),把B、C兩點(diǎn)坐標(biāo)代入,
得
解得
.
∴直線BC解析式為![]()
(3)①∵點(diǎn)P(x,y)在
的圖象上,
![]()
∴PE=x,OE=-2x+6
∴s=
PE·OE=![]()
∴![]()
.
∵x=
符合1<x<3,
∴當(dāng)x=
時(shí),S取得最大值,最大值為
.
②答:存在.
如圖,設(shè)拋物線的對稱軸交x軸于點(diǎn)F,則CF=4,BF=2
![]()
過P作PQ⊥CF于Q,則Rt△CPQ∽Rt△CBF
∴
,即![]()
∴CQ=2r
當(dāng)⊙P與⊙C外切時(shí),CP=r+1
∵CQ2+PQ2=CP2
∴(2r)2+r2=(r+1)2
解得r=
(r=
舍去)
此時(shí)P1(
),或P2(
)
當(dāng)⊙P與⊙C內(nèi)切時(shí),CP=r-1.
∵CQ2+PQ2=CP2
∴(2r)2+r2=(r-1)2
解得r=
(r=
舍去)
此時(shí)P3(
),或P4(
).
∴當(dāng)r1=
, r2=
時(shí),⊙P與⊙C相切.
點(diǎn)P的坐標(biāo)為P1(
),或P2(
),
P3(
),或P4(
).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線
的解析式為
,且
與
軸交于點(diǎn)
,直線
經(jīng)過定點(diǎn)
、
,直線
與
交于點(diǎn)
.
![]()
(1)求直線
的解析式;
(2)求
的面積;
(3)在
軸上是否存在一點(diǎn)
,使
的周長最短?若存在,請求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,O是線段BC上一點(diǎn),以O為圓心,OC為半徑作⊙O,AB與⊙O相切于點(diǎn)F,直線AO交⊙O于點(diǎn)E,D.
(1)求證:AO是△CAB的角平分線;
(2)若tan∠D=
,AE=2,求AC的長.
(3)在(2)條件下,連接CF交AD于點(diǎn)G,⊙O的半徑為3,求CF的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線
(a≠0)的對稱軸為直線
,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與
軸交于點(diǎn)B.
(1)若直線
經(jīng)過B,C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸
上找一點(diǎn)M,使MA+MC的值最小,求點(diǎn)M的坐標(biāo);
(3)設(shè)P為拋物線的對稱軸
上的一個(gè)動(dòng)點(diǎn),求使ΔBPC為直角三角形的點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,BA=AD=DC,點(diǎn)E在CB延長線上,BE=AD,連接AC、AE.
![]()
⑴ 求證:AE=AC;
⑵ 若AB⊥AC, F是BC的中點(diǎn),試判斷四邊形AFCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)下崗工人再就業(yè),某地市政府規(guī)定,企業(yè)按成本價(jià)提供產(chǎn)品給下崗人員自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).老李按照政策投資銷售本市生產(chǎn)的一種兒童面條.已知這種兒童面條的成本價(jià)為每袋12元,出廠價(jià)為每袋16元,每天銷售量
(袋)與銷售單價(jià)
(元)之間的關(guān)系近似滿足一次函數(shù):
.
(1)老李在開始創(chuàng)業(yè)的第1天將銷售單價(jià)定為17元,那么政府這一天為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)老李獲得的利潤為
(元),當(dāng)銷售單價(jià)為多少元時(shí),每天可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種面條的銷售單價(jià)不得高于24元,如果老李想要每天獲得的利潤不低于216元,那么政府每天為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電銷售商城電冰箱的銷售價(jià)為每臺2100元,空調(diào)的銷售價(jià)為每臺1750元,每臺電冰箱的進(jìn)價(jià)比每臺空調(diào)的進(jìn)價(jià)多400元,商城用80000元購進(jìn)電冰箱的數(shù)量與用64000元購進(jìn)空調(diào)的數(shù)量相等.
求每臺電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種家電共100臺,設(shè)購進(jìn)電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com