【題目】下列變形中,不正確的是( )
A.a+(b+c﹣d)=a+b+c﹣d
B.a﹣(b﹣c+d)=a﹣b+c﹣d
C.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d
D.a+b﹣(﹣c﹣d)=a+b+c+d
科目:初中數學 來源: 題型:
【題目】我國首艘國產航母于 2018 年 4 月 26 日正式下水,排水量約為 65000 噸,將65000 用科學記數法表示為( )
A. 6.5×10-4 B. 6.5 ×104 C. ﹣6.5×104 D. 0.65×104
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.2015年5月6日涼山州政府在邛海“空列”項目考察座談會上與多方達成初步合作意向,決定共同出資60.8億元,建設40千米的環邛?罩辛熊,這將是國內第一條空中列車,據測算,將有24千米的“空列”軌道架設在水上,其余架設在陸地上,并且每千米水上建設費用比陸地建設費用多0.2億元.
(1)求每千米“空列”軌道的水上建設費用和陸地建設費用各需多少億元.
(2)預計在某段“空列”軌道的建設中,每天至少需要運送沙石1600 m3,施工方準備租用大、小兩種運輸車共10輛,已知每輛大車每天運送沙石200 m3,每輛小車每天運送沙石120 m3,大、小車每天每輛租車費用分別為1000元、700元,且要求每天租車的總費用不超過9300元,則施工方有幾種租車方案?哪種租車方案費用最低?最低費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設能搭成
種不同的等腰三角形,為探究
之間的關系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
此時,顯然能搭成一種等腰三角形。所以,當
時,![]()
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當
時,![]()
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當
時,![]()
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當
時,![]()
綜上所述,可得表①
| 3 | 4] | 5 | 6 |
| 1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結果填在表②中)
(2)分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三
角形?(只需把結果填在表②中)
| 7 | 8 | 9 | 10 |
|
你不妨分別用11根、12根、13根、14根相同的木棒繼續進行探究,……
解決問題:用
根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設
分別等于
、
、
、
,其中
是整數,把結果填在表③中)
|
|
|
|
|
|
問題應用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=(m﹣2)x2+2mx+m+3與x軸有兩個交點.
(1)求m的取值范圍;
(2)當m取滿足條件的最大整數時,求拋物線與x軸有兩個交點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中.過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長的數值與面積的數值相等,則這個點叫做和諧點.例如.圖中過點P分別作x軸,y軸的垂線.與坐標軸圍成矩形OAPB的周長的數值與面積的數值相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=﹣x+b(b為常數)上,求a,b的值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:關于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求證:無論m取何值時,方程恒有實數根;
(2)若關于x的二次函數y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點間的距離為2時,求拋物線的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com