【題目】在平面直角坐標系
中,直線
與軸,
軸分別交于點
,
.拋物線
經過點
,將點
向右平移
個單位長度,得到點
.
(1)求點
的坐標和拋物線的對稱軸;
(2)若拋物線與線段
恰有一個公共點,結合函數圖象,求
的取值范圍.
【答案】(1)C(5,4);對稱軸x=1;(2)a≥
或a<
或a=-1.
【解析】
(1)根據坐標軸上點的坐標特征可求點B的坐標,根據平移的性質可求點C的坐標;根據坐標軸上點的坐標特征可求點A的坐標,進一步求得拋物線的對稱軸;
(2)結合圖形,分三種情況:①a>0;②a<0,③拋物線的頂點在線段BC上;進行討論即可求解
解:(1)與y軸交點:令x=0代入直線y=4x+4得y=4,
∴B(0,4),
∵點B向右平移5個單位長度,得到點C,
∴C(5,4);
又∵與x軸交點:令y=0代入直線y=4x+4得x=-1,
∴A(-1,0),
∵點B向右平移5個單位長度,得到點C,
將點A(-1,0)代入拋物線y=ax2+bx-3a中得0=a-b-3a,即b=-2a,
∴拋物線的對稱軸x=
;
(2)∵拋物線y=ax2+bx-3a經過點A(-1,0)且對稱軸x=1,
由拋物線的對稱性可知拋物線也一定過A的對稱點(3,0),
①a>0時,如圖1,
![]()
將x=0代入拋物線得y=-3a,
∵拋物線與線段BC恰有一個公共點,
∴-3a<4,
a>
,
將x=5代入拋物線得y=12a,
∴12a≥4,
a≥
,
∴a≥
;
②a<0時,如圖2,
![]()
將x=0代入拋物線得y=-3a,
∵拋物線與線段BC恰有一個公共點,
∴-3a>4,
a<
,
將x=5代入拋物線得y=12a,
∴12a<4
∴a<
,
∴a<
;
③當拋物線的頂點在線段BC上時,則頂點為(1,4),如圖3,
![]()
將點(1,4)代入拋物線得4=a-2a-3a,
解得a=-1.
綜上所述::a≥
或a<
或a=-1.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=3,AB=4,D為斜邊BC的中點,E為AB上一個動點,將△ABC沿直線DE折疊,A,C的對應點分別為
,
,
交BC于點F,若△BEF為直角三角形,則BE的長度為______.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線BC:y=
交x軸于點B,點A在x軸正半軸上,OC為△ABC的中線,C的坐標為(m,
)
(1)求線段CO的長;
(2)點D在OC的延長線上,連接AD,點E為AD的中點,連接CE,設點D的橫坐標為t,△CDE的面積為S,求S與t的函數解析式;
(3)在(2)的條件下,點F為射線BC上一點,連接DB、DF,且∠FDB=∠OBD,CE=
,求此時S值及點F坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.
(1)如圖①,當
時,求
的值;
(2)如圖②,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=
BG.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場有一個可以自由轉動的圓形轉盤(如圖).規定:顧客購物100元以上可以獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一個區域就獲得相應的獎品(指針指向兩個扇形的交線時,當作指向右邊的扇形).下表是活動進行中的一組統計數據:
![]()
轉動轉盤的次數n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“鉛筆”的頻率 (結果保留小數點后兩位) | 0.68 | 0.74 | 0.68 | 0.69 | 0.68 | 0.70 |
(1)轉動該轉盤一次,獲得鉛筆的概率約為_______;(結果保留小數點后一位)
(2)鉛筆每只0.5元,飲料每瓶3元,經統計該商場每天約有4000名顧客參加抽獎活動,請計算該商場每天需要支出的獎品費用;
(3)在(2)的條件下,該商場想把每天支出的獎品費用控制在3000元左右,則轉盤上“一瓶飲料”區域的圓心角應調整為______度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=
x2-
x-3與x軸的交點為A、D(A在D的右側),與y軸的交點為C.
![]()
(1)直接寫出A、D、C三點的坐標;
(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標;
(3)設點C關于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B、C、D是直徑為AB的⊙O上的四個點,CD=BC,AC與BD交于點E。
(1)求證:DC2=CE·AC;
(2)若AE=2EC,求
之值;
(3)在(2)的條件下,過點C作⊙O的切線,交AB的延長線于點H,若S△ACH=
,求EC之長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內,將Rt△OAB沿OB折疊后,點A落在第一象限內的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形,若存在,請求出此時點P的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A
,B(-1,2)是一次函數
與反比例函數![]()
(
)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)根據圖象直接回答:在第二象限內,當x取何值時,一次函數大于反比例函數的值?
(2)求一次函數解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com