【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點A,與函數(shù)
的圖象相交于點B(m,1). ![]()
(1)求點B的坐標及一次函數(shù)的解析式;
(2)若點P在y軸上,且△PAB為直角三角形,請直接寫出點P的坐標.
【答案】
(1)解:∵B在的圖象上,
∴把B(m,1)代入y=
得m=2
∴B點的坐標為(2,1)
∵B(2,1)在直線y=ax﹣a(a為常數(shù))上,
∴1=2a﹣a,
∴a=1
∴一次函數(shù)的解析式為y=x﹣1.
(2)解:過B點向y軸作垂線交y軸于P點.此時∠BPA=90°
![]()
∵B點的坐標為(2,1)
∴P點的坐標為(0,1)
當PB⊥AB時,
在Rt△P1AB中,PB=2,PA=2
∴AB=2 ![]()
在等腰直角三角形PAB中,PB=PA=2 ![]()
∴PA=
=4
∴OP=4﹣1=3
∴P點的坐標為(0,3)
∴P點的坐標為(0,1)或(0,3).
【解析】(1)由點在函數(shù)圖象上,得到點的坐標滿足函數(shù)解析式,利用待定系數(shù)法即可求得.(2)分兩種情況,一種是∠BPA=90°,另一種是∠PBA=90°,所以有兩種答案.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2m+1)+(
m2﹣1).
(1)求證:不論m取什么實數(shù),該二次函數(shù)圖象與x軸總有兩個交點;
(2)若該二次函數(shù)圖象經(jīng)過點(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A的坐標為(﹣2,0),直線y=﹣
x+3與x軸、y軸分別交于點B和點C,連接AC,頂點為D的拋物線y=ax2+bx+c過A、B、C三點.![]()
(1)請直接寫出B、C兩點的坐標,拋物線的解析式及頂點D的坐標;
(2)設(shè)拋物線的對稱軸DE交線段BC于點E,P是第一象限內(nèi)拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標;
(3)設(shè)點M是線段BC上的一動點,過點M作MN∥AB,交AC于點N,點Q從點B出發(fā),以每秒1個單位長度的速度沿線段BA向點A運動,運動時間為t(秒),當t(秒)為何值時,存在△QMN為等腰直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.![]()
(1)求證:AE=BG
(2)將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)α(0°<α≤360°)如圖2所示,判斷(1)中的結(jié)論是否仍然成立?如果仍成立,請給予證明;如果不成立,請說明理由;
(3)若BC=DE=4,當旋轉(zhuǎn)角α為多少度時,AE取得最大值?直接寫出AE取得最大值時α的度數(shù),并利用備用圖畫出這時的正方形DEFG,最后求出這時AF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.
(1)如圖(1)當射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.![]()
(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.![]()
(3)在圖(2)中,若AB=AC=10,BC=12,當S△DEF=
S△ABC時,求線段EF的長.![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4)、B(3,﹣2)、C(6,﹣3).
(1)①畫出△ABC關(guān)于x軸對稱的△A1B1C1;
②以M點為位似中心,在網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2:1.
(2)直接寫出C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①b2﹣4ac<0;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③2a+b=0;④當y>0時,x的取值范圍是﹣1<x<3;⑤當x>0時,y隨x增大而減小.其中結(jié)論正確的個數(shù)是( ) ![]()
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+(m﹣1)x+m(m>1)與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C(0,3).![]()
(1)求拋物線的解析式;
(2)點D和點C關(guān)于拋物線的對稱軸對稱,點你F在直線AD上方的拋物線上,F(xiàn)G⊥AD于G,F(xiàn)H∥x軸交直線AD于H,求△FGH的周長的最大值;
(3)點M是拋物線的頂點,直線l垂直于直線AM,與坐標軸交于P、Q兩點,點R在拋物線的對稱軸上,使得△PQR是以PQ為斜邊的等腰直角三角形,求直線l的解析式.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com