【題目】小剛在課外書中看到這樣一道有理數的混合運算題:
計算:![]()
她發現,這個算式反映的是前后兩部分的和,而這兩部分之間存在著某種關系,利用這種關系,他順利地解答了這道題。
(1)前后兩部分之間存在著什么關系?
(2)先計算哪步分比較簡便?并請計算比較簡便的那部分。
(3)利用(1)中的關系,直接寫出另一部分的結果。
(4)根據以上分析,求出原式的結果。
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,AD∥BC,E 為 CD 的中點,連接 AE、BE,延長 AE 交 BC 的 延長線于點 F.
(1)△DAE 和△CFE 全等嗎?說明理由;
(2)若 AB=BC+AD,說明 BE⊥AF;
(3)在(2)的條件下,若 EF=6,CE=5,∠D=90°,你能否求出 E 到 AB 的距離?如果能 請直接寫出結果.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段AB=2,MN⊥AB于點M,且AM=BM,P是射線MN上一動點,E,D分別是PA,PB的中點,過點A,M,D的圓與BP的另一交點C(點C在線段BD上),連結AC,DE.![]()
(1)當∠APB=28°時,求∠B和
的度數;
(2)求證:AC=AB.
(3)在點P的運動過程中
①當MP=4時,取四邊形ACDE一邊的兩端點和線段MP上一點Q,若以這三點為頂點的三角形是直角三角形,且Q為銳角頂點,求所有滿足條件的MQ的值;
②記AP與圓的另一個交點為F,將點F繞點D旋轉90°得到點G,當點G恰好落在MN上時,連結AG,CG,DG,EG,直接寫出△ACG和△DEG的面積之比.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從共享單車,共享汽車等共享出行到共享充電寶,共享雨傘等共享物品,各式各樣的共享經濟模式在各個領域迅速普及應用,越來越多的企業與個人成為參與者與受益者.根據國家信息中心發布的《中國分享經濟發展報告2017》顯示,2016年我國共享經濟市場交易額約為34520億元,比上年增長103%;超6億人參與共享經濟活動,比上年增加約1億人.
如圖是源于該報告中的中國共享經濟重點領域市場規模統計圖:![]()
(1)請根據統計圖解答下列問題:
①圖中涉及的七個重點領域中,2016年交易額的中位數是億元.
②請分別計算圖中的“知識技能”和“資金”兩個重點領域從2015年到2016年交易額的增長率(精確到1%),并就這兩個重點領域中的一個分別從交易額和增長率兩個方面,談談你的認識.
(2)小宇和小強分別對共享經濟中的“共享出行”和“共享知識”最感興趣,他們上網查閱了相關資料,順便收集到四個共享經濟領域的圖標,并將其制成編號為A,B,C,D的四張卡片(除編號和內容外,其余完全相同)他們將這四張卡片背面朝上,洗勻放好,從中隨機抽取一張(不放回),再從中隨機抽取一張,請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識”的概率(這四張卡片分別用它們的編號A,B,C,D表示)![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣
x2+
x+3
與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,連接AC、BC.點P沿AC以每秒1個單位長度的速度由點A向點C運動,同時,點Q沿BO以每秒2個單位長度的速度由點B向點O運動,當一個點停止運動時,另一個點也隨之停止運動,連接PQ.過點Q作QD⊥x軸,與拋物線交于點D,與BC交于點E,連接PD,與BC交于點F.設點P的運動時間為t秒(t>0).![]()
(1)求直線BC的函數表達式;
(2)①直接寫出P,D兩點的坐標(用含t的代數式表示,結果需化簡)
②在點P、Q運動的過程中,當PQ=PD時,求t的值;
(3)試探究在點P,Q運動的過程中,是否存在某一時刻,使得點F為PD的中點?若存在,請直接寫出此時t的值與點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若關于x的不等式x﹣
<1的解集為x<1,則關于x的一元二次方程x2+ax+1=0根的情況是( )
A.有兩個相等的實數根
B.有兩個不相等的實數根
C.無實數根
D.無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=
x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,與y軸交于點C.![]()
(1)求該拋物線的解析式;
(2)直線y=﹣x+n與該拋物線在第四象限內交于點D,與線段BC交于點E,與x軸交于點F,且BE=4EC.
①求n的值;
②連接AC,CD,線段AC與線段DF交于點G,△AGF與△CGD是否全等?請說明理由;
(3)直線y=m(m>0)與該拋物線的交點為M,N(點M在點N的左側),點 M關于y軸的對稱點為點M',點H的坐標為(1,0).若四邊形OM'NH的面積為
.求點H到OM'的距離d的值.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現對他們進行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統計圖表:
![]()
甲、乙射擊成績統計表
平均數 | 中位數 | 方差 | 命中10環的次數 | |
甲 | 7 | |||
乙 | 1 |
(1)請補全上述圖表(請直接在表中填空和補全折線圖);
(2)如果規定成績較穩定者勝出,你認為誰將勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據圖表中的信息,應該制定怎樣的評判規則?為什么?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com