【題目】如圖,在等邊△ABC中,點(diǎn)D在BC邊上,點(diǎn)E在AC的延長(zhǎng)線(xiàn)上,DE=DA.
(1)求證:∠BAD=∠EDC;
(2)作出點(diǎn)E關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)M,連接DM、AM,猜想DM與AM的數(shù)量關(guān)系,并說(shuō)明理由.
![]()
【答案】(1)見(jiàn)解析;(2) 猜想:DM=AM. 理由見(jiàn)解析.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得出相等的角,相等的邊,再等量代換即可得證;
(2)根據(jù)題意畫(huà)出圖形,根據(jù)軸對(duì)稱(chēng)的性質(zhì),得∠MDC=∠EDC,DE=DM,然后根據(jù)(1)的結(jié)論和等邊三角形的性質(zhì)證明即可.
(1)證明:∵△ABC是等邊三角形,∴∠BAC=∠ACB=60°.
又∵∠BAD+∠DAC=∠BAC,∠EDC+∠DEC=∠ACB,
∴∠BAD+∠DAC=∠EDC+∠DEC.
∵DE=DA,∴∠DAC=∠DEC,
∴∠BAD=∠EDC.
(2)解:按題意畫(huà)圖如圖所示.
![]()
猜想:DM=AM.
理由如下:∵點(diǎn)M、E關(guān)于直線(xiàn)BC對(duì)稱(chēng),
∴∠MDC=∠EDC,DE=DM.
又由(1)知∠BAD=∠EDC,∴∠MDC=∠BAD.
∵∠ADC=∠BAD+∠B,即∠ADM+∠MDC=∠BAD+∠B,
∴∠ADM=∠B=60°.
又∵DA=DE=DM,
∴△ADM是等邊三角形,
∴DM=AM.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為表彰在“書(shū)香校園”活動(dòng)中表現(xiàn)積極的同學(xué),決定購(gòu)買(mǎi)筆記本和鋼筆作為獎(jiǎng)品.已知5個(gè)筆記本、2支鋼筆共需要100元;4個(gè)筆記本、7支鋼筆共需要161元
(1)筆記本和鋼筆的單價(jià)各多少元?
(2)恰好“五一”,商店舉行“優(yōu)惠促銷(xiāo)”活動(dòng),具體辦法如下:筆記本9折優(yōu)惠;鋼筆10支以上超出部分8折優(yōu)惠若買(mǎi)x個(gè)筆記本需要y1元,買(mǎi)x支鋼筆需要y2元;求y1、y2關(guān)于x的函數(shù)解析式;
(3)若購(gòu)買(mǎi)同一種獎(jiǎng)品,并且該獎(jiǎng)品的數(shù)量超過(guò)10件,請(qǐng)你分析買(mǎi)哪種獎(jiǎng)品省錢(qián).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,點(diǎn)C(1,2)、A(-2,0),則點(diǎn)B的坐標(biāo)是__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)
與
軸、
軸分別交于
,
兩點(diǎn),
是以
為圓心,1為半徑的圓上一動(dòng)點(diǎn),連接
,
,則
面積的最大值是( )
![]()
A. 8 B. 12
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如
.善于思考的小明進(jìn)行了以下探索:
設(shè)
(其中
、
、
、
均為整數(shù)),則有
.
∴
,
.這樣小明就找到了一種把類(lèi)似
的式子化為平方式的方法.
請(qǐng)你仿照小明的方法解決下列問(wèn)題:
(1)當(dāng)
、
、
、
均為正整數(shù)時(shí),若
,用含
、
的式子分別表示
、
,得
_________,
_________.
(2)利用所探索的結(jié)論,填空:
(_____+_____
)2;
(3)若
,且
、
、
均為正整數(shù),求
的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在
中,
,
,點(diǎn)
在邊
上,以點(diǎn)
為圓心作⊙
.當(dāng)⊙
恰好同時(shí)與邊
,
相切時(shí),⊙
的半徑長(zhǎng)為________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:要將一塊直徑為
的半圓形鐵皮加工成一個(gè)圓柱的兩個(gè)底面和一個(gè)圓錐的底面.
![]()
操作:
方案一:在圖
中,設(shè)計(jì)一個(gè)圓錐底面最大,半圓形鐵皮得以最充分利用的方案(要求:畫(huà)示意圖);
方案二:在圖
中,設(shè)計(jì)一個(gè)圓柱兩個(gè)底面最大,半圓形鐵皮得以最充分利用的方案(要求:畫(huà)示意圖).
探究:
求方案一中圓錐底面的半徑;
求方案二中半圓圓心為
,圓柱兩個(gè)底面圓心為
、
,圓錐底面的圓心為
,試判斷以
、
、
、
為頂點(diǎn)的四邊形是什么樣的特殊四邊形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程(x–2)(x–3)=m有實(shí)數(shù)根x1、x2,且x1<x2,則下列結(jié)論中錯(cuò)誤的是
A. 當(dāng)m=0時(shí),x1=2,x2=3
B. m>–![]()
C. 當(dāng)m>0時(shí),2<x1<x2<3
D. 二次函數(shù)y=(x–x1)(x–x2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AC=BC,∠ACB=90°,CE與AB相交于點(diǎn)D,且BE⊥CE,AF⊥CE,垂足分別為點(diǎn)E、F.
![]()
(1)若AF=5,BE=2,求EF的長(zhǎng).
(2)如圖2,取AB中點(diǎn)G,連接FC、EC,請(qǐng)判斷△GEF的形狀,并說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com