【題目】(10分)如圖,在直角坐標系xOy中,A(﹣1,0),B(3,0),將A,B同時分別向上平移2個單位,再向右平移1個單位,得到的對應點分別為D,C,連接AD,BC.
![]()
(1)直接寫出點C,D的坐標:C ,D ;
(2)四邊形ABCD的面積為 ;
(3)點P為線段BC上一動點(不含端點),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.
【答案】(1)(4,2),(0,2);(2)8;(3)見解析
【解析】試題分析:(1)根據C、D兩點在坐標系中的位置即可得出此兩點坐標;
(2)先判斷出四邊形ABCD是平行四邊形,再求出其面積即可;
(3)過點P作PQ∥AB,故可得出CD∥PQ,AB∥PQ,由平形線的性質即可得出結論.
解:(1)由圖可知,C(4,2),D(0,2).
故答案為:(4,2),(0,2);
(2)∵線段CD由線段BA平移而成,
∴AB∥CD,AB=CD,
∴四邊形ABCD是平行四邊形,
∴S平行四邊形ABCD=4×2=8.
故答案為:8;
(3)證明:如圖,過點P作PQ∥AB,
∵CD∥AB,
∴CD∥PQ,AB∥PQ,
∴∠CDP=∠1,∠BOP=∠2,
∴∠CDP+∠BOP=∠1+∠2=∠OPD.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(0,2),B(2,2),C(﹣1,﹣2),拋物線F:y=x2﹣2mx+m2﹣2與直線x=﹣2交于點P. ![]()
(1)當拋物線F經過點C時,求它的表達式;
(2)設點P的縱坐標為yP , 求yP的最小值,此時拋物線F上有兩點(x1 , y1),(x2 , y2),且x1<x2≤﹣2,比較y1與y2的大小;
(3)當拋物線F與線段AB有公共點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數學等式.
例如:由圖1可得到(a+b)=a+2ab+b.
![]()
![]()
![]()
圖1 圖2 圖3
(1)寫出由圖2所表示的數學等式:_____________________;寫出由圖3所表示的數學等式:_____________________;
(2)利用上述結論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小敏從A地出發向B地行走,同時小聰從B地出發向A地行走,如圖所示,相交于點P的兩條線段
、
分別表示小敏、小聰離B地的距離
與已用時間
之間的關系,則小敏、小聰行走的速度分別是![]()
![]()
A.
和
B.
和![]()
C.
和
D.
和![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,
的圓心坐標為
,半徑為
函數
的圖象與x軸交于點A,與y軸交于點B,點P為線段AB上一動點.
連接CO,求證:
;
若
是等腰三角形,求點P的坐標;
當直線PO與
相切時,求
的度數;當直線PO與
相交時,設交點為E、F,點M為線段EF的中點,令
,求s與t之間的函數關系,并寫出t的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設A(-2,y1),B(1,y2),C(2,y3)是拋物線y=-(x+1)2+a上的三點,則y1 , y2 , y3的大小關系為( )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y2>y1
D.y3>y1>y2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車裝滿貨物一次可運貨10噸;用1輛A型車和2輛B型車裝滿貨物一次可運貨11噸.某物流公司現有31噸貨物,計劃同時租用A型車
輛,B型車
輛,一次運完,且恰好每輛車都裝滿貨物. 根據以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設計租車方案.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com