分析:(1)根據旋轉的性質得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根據“SAS”可判斷△BCD≌△ACE,則∠B=∠CAE=45°,所以∠DAE=90°,即可得到結論。
(2)由于BC=AC,則AC
2=AD•AB,根據相似三角形的判定方法得到△DAC∽△CAB,則∠CDA=∠BCA=90°,可判斷四邊形ADCE為矩形,利用CD=CE可判斷四邊形ADCE為正方形。
證明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°。
∵線段CD繞點C順時針旋轉90°至CE位置,∴∠DCE=90°,CD=CE。
∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE。
∵在△BCD和△ACE中,

,
∴△BCD≌△ACE(SAS)。∴∠B=∠CAE=45°。
∴∠BAE=45°+45°=90°。∴AB⊥AE。
(2)∵BC
2=AD•AB,BC=AC,∴AC
2=AD•AB。∴

。
∵∠DAC=∠CAB,∴△DAC∽△CAB。∴∠CDA=∠BCA=90°。
∵∠DAE=90°,∠DCE=90°,∴四邊形ADCE為矩形。
∵CD=CE,∴四邊形ADCE為正方形。