【題目】如圖,在
中,
,
,點(diǎn)D是BC上任意一點(diǎn),將線(xiàn)段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)
,得到線(xiàn)段AE,連結(jié)EC.
依題意補(bǔ)全圖形;
求
的度數(shù);
若
,
,將射線(xiàn)DA繞點(diǎn)D順時(shí)針旋轉(zhuǎn)
交EC的延長(zhǎng)線(xiàn)于點(diǎn)F,請(qǐng)寫(xiě)出求AF長(zhǎng)的思路.
![]()
【答案】(1)見(jiàn)解析;(2)90°;(3)解題思路見(jiàn)解析.
【解析】
(1)將線(xiàn)段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°,得到線(xiàn)段AE,連結(jié)EC.
(2)先判定△ABD≌△ACE,即可得到
,再根據(jù)
,即可得出
;
(3)連接DE,由于△ADE為等腰直角三角形,所以可求
;由
,
,可求
的度數(shù)和
的度數(shù),從而可知DF的長(zhǎng);過(guò)點(diǎn)A作
于點(diǎn)H,在Rt△ADH中,由
,AD=1可求AH、DH的長(zhǎng);由DF、DH的長(zhǎng)可求HF的長(zhǎng);在Rt△AHF中,由AH和HF,利用勾股定理可求AF的長(zhǎng).
解:
如圖,
![]()
線(xiàn)段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)
,得到線(xiàn)段AE.
,
,
.
,
.
,
在
和
中
,
≌
.
,
中,
,
,
.
;
Ⅰ
連接DE,由于
為等腰直角三角形,所以可求
;
Ⅱ
由
,
,可求
的度數(shù)和
的度數(shù),從而可知DF的長(zhǎng);
Ⅲ
過(guò)點(diǎn)A作
于點(diǎn)H,在
中,由
,
可求AH、DH的長(zhǎng);
Ⅳ
由DF、DH的長(zhǎng)可求HF的長(zhǎng);
Ⅴ
在
中,由AH和HF,利用勾股定理可求AF的長(zhǎng).
故答案為:(1)見(jiàn)解析;(2)90°;(3)解題思路見(jiàn)解析.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線(xiàn);
(2)如果⊙O的半徑為
,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
![]()
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線(xiàn)與等腰三角形的性質(zhì),易證得
≌
即可得
,則可證得
為
的切線(xiàn);
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得
利用勾股定理即可求得
的長(zhǎng),又由OE∥AB,證得
根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得
的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得
與
的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切線(xiàn);
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為![]()
![]()
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線(xiàn)y=ax2+ax+b(a≠0)與直線(xiàn)y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線(xiàn)的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線(xiàn)與拋物線(xiàn)的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線(xiàn)y=﹣2x與拋物線(xiàn)在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線(xiàn)段GH沿y軸向上平移t個(gè)單位(t>0),若線(xiàn)段GH與拋物線(xiàn)有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點(diǎn)D.點(diǎn)E、F分別在邊AB、AC上,且BE=AF,FG∥AB交線(xiàn)段AD于點(diǎn)G,連接BG、EF.
(1)求證:四邊形BGFE是平行四邊形;
(2)若△ABG∽△AGF,AB=10,AG=6,求線(xiàn)段BE的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種商品,每件的成本每千克18元,規(guī)定每千克售價(jià)不低于成本,且獲利不得高于100%,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 40 | 39 | 38 | 37 |
銷(xiāo)售量y(千克) | 20 | 22 | 24 | 26 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式(利潤(rùn)=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?
(3)該超市若想每天銷(xiāo)售利潤(rùn)不低于480元,請(qǐng)結(jié)合函數(shù)圖象幫助超市確定產(chǎn)品的銷(xiāo)售單價(jià)范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,每個(gè)小正方形的邊長(zhǎng)都為1,
和
的頂點(diǎn)都在格點(diǎn)上,回答下列問(wèn)題:
可以看作是
經(jīng)過(guò)若干次圖形的變化
平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)
得到的,寫(xiě)出一種由
得到
的過(guò)程:______;
畫(huà)出
繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)
的圖形
;
在
中,點(diǎn)C所形成的路徑的長(zhǎng)度為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在x軸的正半軸上依次間隔相等的距離取點(diǎn)A1,A2,A3,A4,…,An,分別過(guò)這些點(diǎn)做x軸的垂線(xiàn)與反比例函數(shù)y=
的圖象相交于點(diǎn)P1,P2,P3,P4,…Pn,再分別過(guò)P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分別為B1,B2,B3,B4,…,Bn﹣1,連接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一組Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,則Rt△Pn﹣1Bn﹣1Pn的面積為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD,將邊CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到線(xiàn)段CE,連接DE,AE,BD交于點(diǎn)F.
(1)求∠AFB的度數(shù);
(2)求證:BF=EF;
(3)連接CF,直接用等式表示線(xiàn)段AB,CF,EF的數(shù)量關(guān)系.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.
(1)求證:∠C=90°;
(2)當(dāng)BC=3,sinA=
時(shí),求AF的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)AB與x軸、y軸分別交于點(diǎn)A,B,與反比例函數(shù)
(
為常數(shù),且
)在第一象限的圖象交于點(diǎn)E,F(xiàn).過(guò)點(diǎn)E作EM⊥y軸于M,過(guò)點(diǎn)F作FN⊥x軸于N,直線(xiàn)EM與FN交于點(diǎn)C.若
(
為大于l的常數(shù)).記△CEF的面積為
,△OEF的面積為
,則
=________. (用含
的代數(shù)式表示)
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com