【題目】如圖,數軸上的 A 、 B 兩點所表示的數分別為 a 、b,a b 0 ,ab 0
![]()
(1)原點O 的位置在 ;
A.點 A 的右邊 B. 點 B 的左邊
C.點 A 與點 B 之間,且靠近點 A D. 點 A 與點 B 之間,且靠近點 B
(2)若 a b 2 ,
①利用數軸比較大小: a 1, b 1 ;(填“>”、“<”或“=”)
②化簡:|a-1|+|b+1|.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=8,tanB=
,點D是AB的中點,如果把△BCD沿直線CD翻折,使得點B落在同一平面內的B′處,聯結A B′,那么A B′的長為_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②當x>﹣1時,y隨x增大而減小;③a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實數根,則m>2; ⑤3a+c<0.其中正確結論的個數是( )
![]()
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,將一點(橫坐標與縱坐標不相等)橫坐標與縱坐標互換后得到的點叫這一點的“對稱點”,如(2,﹣3)與(﹣3,2)是一對“對稱點”.
(1)點(m,n)和它的“對稱點“均在直線y=kx+a上,求k的值;
(2)直線y=kx+3與拋物線y=x2+bx+c的兩個交點A,B恰好是“對稱點”,其中點A在反比例函數y=
的圖象上,求此拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y﹣2與x成正比例,當x=2時,y=6.
(1)求y與x之間的函數解析式.
(2)在所給直角坐標系中畫出函數圖象.
(3)由函數圖象直接寫出當﹣2≤y≤2時,自變量x的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設C為線段AB的中點,四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長為半徑的⊙B與AB相交于F點,延長EB交⊙B于G點,連接DG交于AB于Q點,連接AD.
求證:(1)AD是⊙B的切線;(2)AD=AQ;(3)BC2=CFEG.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點,且∠DBC=∠A,連接OE并延長與⊙O相交于點F,與BC相交于點C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=6,BC=8,點D、E分別是斜邊AB和直角邊BC上的點,把△ABC沿著直線DE折疊,頂點B的對應點是點B′.
(1)如圖①,如果點B′和點A重合,求CE的長.
(2)如圖②,如果點B′落在直角邊AC的中點上,求BE的長.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點O順時針方向轉動到某個位置,若OC恰好平分∠AOE,求∠COD的度數;
(3)如圖③,將直角三角板DOE繞點O任意轉動,如果OD始終在∠AOC的內部,試猜想∠AOD和∠COE有怎樣的數量關系?并說明理由.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com