【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙O的另一個交點為E,連接AC,CE.![]()
(1)求證:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的長.
【答案】
(1)
證明:∵AB為⊙O的直徑,
∴∠ACB=90°,
∴AC⊥BC,
又∵DC=CB,
∴AD=AB,
∴∠B=∠D
(2)
解:設BC=x,則AC=x﹣2,
在Rt△ABC中,AC2+BC2=AB2,
∴(x﹣2)2+x2=42,
解得:x1=1+
,x2=1﹣
(舍去),
∵∠B=∠E,∠B=∠D,
∴∠D=∠E,
∴CD=CE,
∵CD=CB,
∴CE=CB=1+
.
【解析】(1)由AB為⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據線段垂直平分線的性質,可證得AD=AB,即可得:∠B=∠D;(2)首先設BC=x,則AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2 , 可得方程:(x﹣2)2+x2=42 , 解此方程即可求得CB的長,繼而求得CE的長.
【考點精析】掌握勾股定理的概念和圓周角定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.
科目:初中數學 來源: 題型:
【題目】已知當x1=a,x2=b,x3=c時,二次函數y=
x2+mx對應的函數值分別為y1 , y2 , y3 , 若正整數a,b,c恰好是一個三角形的三邊長,且當a<b<c時,都有y1<y2<y3 , 則實數m的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列做法正確的是( )
A. 方程
=1+
去分母,得2(2x-1)=1+3(x-3)
B. 方程4x=7x-8移項,得4x-7x=8
C. 方程3(5x-1)-2(2x-3)=7去括號,得15x-3-4x-6=7
D. 方程1-
x=3x+
移項,得-
x-3x=
-1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC三邊長a=b=6
,c=12.
(1)如圖1,以點A為原點,AB所在直線為x軸建立平面直角坐標系,直接出點B,C的坐標.
(2)如圖2,過點C作∠MCN=45°交AB于點M,N,請證明AM2+BN2=MN2;
(3)如圖3,當點M,N分布在點B異側時,則(3)中的結論還成立嗎?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一塊矩形木板,它的右上角有一個圓洞,現設想將它改造成火鍋餐桌桌面,要求木板大小不變,且使圓洞的圓心在矩形桌面的對角線的交點上.木工師傅想了一個巧妙的辦法,他測量了PQ與圓洞的切點K到點B的距離及相關數據(單位:cm),從點N沿折線NF﹣FM(NF∥BC,FM∥AB)切割,如圖1所示.圖2中的矩形EFGH是切割后的兩塊木板拼接成符合要求的矩形桌面示意圖(不重疊,無縫隙,不記損耗),則CN,AM的長分別是 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為( ) ![]()
A.3
B.4﹣ ![]()
C.4
D.6﹣2 ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一學校為了解九年級學生某次體育測試成績,現對這次體育測試成績進行抽樣調查,結果統計如下,其中扇形統計圖中C組所在的扇形的圓心角為36° 被抽取的體育測試成績頻數分布表
組別 | 成績 | 頻數 |
A | 20<x≤24 | 2 |
B | 24<x≤28 | 3 |
C | 28<x≤32 | 5 |
D | 32<x≤36 | b |
E | 36<x≤40 | 20 |
合計 | a | |
根據上面的圖表提供的信息,回答下列問題:![]()
(1)計算頻數分布表中a與b的值;
(2)根據C組28<x≤32的組中值30,估計C組中所有數據的和為;
(3)請估計該校九年級學生這次體育測試成績的平均分(結果取整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,以點A為圓心,AB長為半徑畫弧,交CD于點E,連接AE、BE.作BF⊥AE于點F. ![]()
(1)求證:BF=AD;
(2)若EC=
﹣1,∠FEB=67.5°,求扇形ABE的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛公交車從A站出發勻速開往B站.在行駛時間相同的前提下,如果車速是60千米/小時,就會超過B站0.2千米;如果車速是50千米/小時,就還需行駛0.8千米才能到達B站.
(1)求A站和B站相距多少千米?行駛時間是多少?如果要在行駛時間點恰好到達B站,行駛的速度是多少?
(2)圖①是這輛公交車線路的收支差額y(票價總收入減去運營成本)與乘客數量的函數圖象.目前這條線路虧損,為了扭虧,有關部門舉行了提高票價的聽證會.乘客代表認為:公交公司應節約能源,改善管理,降低運營成本,以此舉實現扭虧.公交公司認為:運營成本難以下降,公司己盡力,提高票價才能扭虧.根據這兩種意見,可以把圖①分別改畫成圖②和圖③.
(a)說明圖①中點A和點B的實際意義;
(b)你認為圖②和圖③兩個圖象中,反映乘客意見的是 ,反映公交公司意見的是 .
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com