【題目】已知,如圖1,AD是△ABC的角平分線(xiàn),且AD=BD,
(1)求證:△CDA∽△CAB;
(2)若AD=6,CD=5,求AC的值;
(3)如圖2,延長(zhǎng)AD至E,使AE=AB,過(guò)E點(diǎn)作EF∥AB,交AC于點(diǎn)F,試探究線(xiàn)段EF
與線(xiàn)段AD的大小關(guān)系.
![]()
【答案】(1)證明見(jiàn)解析;(2)![]()
【解析】試題分析:(1)根據(jù)角平分線(xiàn)的性質(zhì),得到∠BAD=∠CAD,再由等邊對(duì)等角得到∠BAD=∠ABD,由等量代換得到∠CAD=∠B,即可得到結(jié)論;
(2)由相似三角形對(duì)應(yīng)邊成比例即可得到結(jié)論;
(3)結(jié)論為EF=AD.證明△BAD≌△EAF即可.
試題解析:(1)證明:∵AD是△ABC的角平分線(xiàn),∴∠BAD=∠CAD.
∵AD=BD,∴∠BAD=∠ABD,∴∠CAD=∠B.∵∠C=∠C,∴△CDA∽△CAB.
(2)解:∵△CDA∽△CAB, ∴
,∴
,∴
,∴AC=
.
(3)答:EF= AD.理由如下:
∵EF∥AB,∴∠E=∠BAD.∵∠BAD=∠B,∴∠B=∠E.
∵AE=AB,∠BAD=∠EAF,∴△BAD≌△EAF,∴EF= AD.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為3的正三角形ABC放置在直線(xiàn)l上(AB與直線(xiàn)l重合),將正三角形ABC沿直線(xiàn)l向右做無(wú)滑動(dòng)的滾動(dòng),正三角形ABC的任意一邊與直線(xiàn)l重合時(shí)記錄滾動(dòng)次數(shù),例如,正三角形ABC由圖中位置①滾動(dòng)到位置②時(shí)記錄為滾動(dòng)一次,當(dāng)正三角形ABC由圖中位置①開(kāi)始滾動(dòng)2018次時(shí),點(diǎn)A經(jīng)過(guò)的路徑總長(zhǎng)度為( )
![]()
A.2690πB.2692πC.4034πD.4036π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀(guān)察下列兩個(gè)等式:
,
,給出定義如下:我們稱(chēng)使等式
成立的一對(duì)有理數(shù)
,
為“共生有理數(shù)對(duì)”,記為(
,
),如:數(shù)對(duì)(
,
),(
,
),都是“共生有理數(shù)對(duì)”.
(1)數(shù)對(duì)(
,
),(
,
)中是“共生有理數(shù)對(duì)”嗎?說(shuō)明理由.
(2)若(
,
)是“共生有理數(shù)對(duì)”,則(
,
)是“共生有理數(shù)對(duì)”嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,3).
![]()
(1)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到的△A1BC1.
(2)以原點(diǎn)O為位似中心,位似比為2:1,在y軸的左側(cè),畫(huà)出將△ABC放大后的△A2B2C2,并寫(xiě)出A2點(diǎn)的坐標(biāo)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,反比例函數(shù)y=
的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4),點(diǎn)B(m,-1),
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫(xiě)出不等式x+b>
的解.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=8.射線(xiàn)BD為∠ABC的平分線(xiàn),交AC于點(diǎn)D.動(dòng)點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)B向終點(diǎn)C運(yùn)動(dòng).作PE⊥BC交射線(xiàn)BD于點(diǎn)E.以PE為邊向右作正方形PEFG.正方形PEFG與△BDC重疊部分圖形的面積為S.
![]()
(1)求tan∠ABD的值.
(2)當(dāng)點(diǎn)F落在AC邊上時(shí),求t的值.
(3)當(dāng)正方形PEFG與△BDC重疊部分圖形不是三角形時(shí),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,解答問(wèn)題:如果一個(gè)四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個(gè)位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱(chēng)這個(gè)四位數(shù)“依賴(lài)數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴(lài)數(shù)”.
(1)請(qǐng)直接寫(xiě)出最小的四位依賴(lài)數(shù);
(2)若四位依賴(lài)數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).
(3)已知一個(gè)大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結(jié)果中,當(dāng)nq﹣np取得最小時(shí),稱(chēng)“m=pq+n4”是m的“最小分解”,此時(shí)規(guī)定:F(m)=
,例:20=1×4+24=2×2+24=1×19+14,因?yàn)?/span>1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)=
=1,求所有“特色數(shù)”的F(m)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育用品商店試銷(xiāo)一款成本為 50 元的排球,規(guī)定試銷(xiāo)期間單價(jià)不低于成本價(jià),且獲利不得高于 40%。經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量
(個(gè))與銷(xiāo)售單價(jià)
(元)之間滿(mǎn)足如圖所示的一次函數(shù)關(guān)系.
(1)試確定
與
之間的函數(shù)關(guān)系式;
(2)若該體育用品商店試銷(xiāo)的這款排球所獲得的利潤(rùn)為
元,試寫(xiě)出利潤(rùn)
(元)與銷(xiāo)售單價(jià)
(元)之間的函數(shù)關(guān)系式;當(dāng)試銷(xiāo)單價(jià)定為多少元時(shí),該商店可獲最大利潤(rùn)?最大利潤(rùn)是多少元?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,a),點(diǎn)B,點(diǎn)C的坐標(biāo)分別為(-b,0),(b,0).
(1)如圖,求點(diǎn)A,B,C的坐標(biāo);
![]()
(2)如圖,若點(diǎn)D在第一象限且滿(mǎn)足AD=AC,∠DAC=90°,求BD;
![]()
(3)如圖,在(2)的條件下,若在第四象限有一點(diǎn)E,滿(mǎn)足∠BEC=∠BDC,請(qǐng)?zhí)骄?/span>BE,CE,AE之間的數(shù)量關(guān)系.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com