此題考查了角平分線的性質
由三角形內角平分線的交點到三角形三邊的距離相等,可得三角形內角平分線的交點滿足條件;然后利用角平分線的性質,可證得三角形兩條外角平分線的交點到其三邊的距離也相等,這樣的點有3個,可得可供選擇的地址有4個.
∵△ABC內角平分線的交點到三角形三邊的距離相等,
∴△ABC內角平分線的交點滿足條件;
如圖:點P是△ABC兩條外角平分線的交點,過點P作PE⊥AB,PD⊥BC,PF⊥AC,

∴PE=PF,PF=PD,
∴PE=PF=PD,
∴點P到△ABC的三邊的距離相等,
∴△ABC兩條外角平分線的交點到其三邊的距離也相等,滿足這條件的點有3個;
綜上,到三條公路的距離相等的點有4個,
∴可供選擇的地址有4個.