(本小題滿分14分)如圖,在四面體
中,
,
是
的中點(diǎn).![]()
(1)求證:
平面
;
(2)設(shè)
為
的重心,
是線段
上一點(diǎn),且
.求證:
平面
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直三棱柱
中,
,
分別是棱
上的點(diǎn)(點(diǎn)
不同于點(diǎn)
),且
為
的中點(diǎn).![]()
求證:(1)平面
平面
;
(2)直線
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分15分)如圖,在四棱錐
中,底面
是正方形,側(cè)棱
底面
,
,
是
的中點(diǎn),作
交
于點(diǎn)![]()
![]()
(1)證明:
平面
.
(2)證明:
平面
.
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體
中
,
為
中點(diǎn).![]()
(1)求證:
;
(2)在棱
上是否存在一點(diǎn)
,使得
平面
若存在,求
的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
如圖,在四棱錐
中,底面
為平行四邊形,
平面
,![]()
![]()
在棱
上.![]()
(I)當(dāng)
時(shí),求證
平面![]()
(II)當(dāng)二面角
的大小為
時(shí),求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E的棱AB上移動(dòng)。![]()
(I)證明:D1E
A1D;
(II)AE等于何值時(shí),二面角D1-EC-D的大小為
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,
底面
,
,
,
,
是
的中點(diǎn).
(Ⅰ)證明:
;
(Ⅱ)證明:
平面
;
(Ⅲ)求二面角
的正切值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知棱長(zhǎng)為a的正方體ABCD—A1B1C1D1,E為BC中點(diǎn).
(1)求B到平面B1ED距離
(2)求直線DC和平面B1ED所成角的正弦值. (12分) ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐
中,側(cè)面
與側(cè)面
均為等邊三角形,
,
為
中點(diǎn).
(Ⅰ)證明:
平面
;
(Ⅱ)求二面角
的余弦值.![]()
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com