已知橢圓
:![]()
的離心率為
,過右焦點
且斜率為
的直線交橢圓
于
兩點,
為弦
的中點,
為坐標(biāo)原點.
(1)求直線
的斜率
;
(2)求證:對于橢圓
上的任意一點
,都存在
,使得
成立.
(1) ![]()
(2) 顯然
與
可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量
,有且只有一對實數(shù)
,使得等式
成立.,那么設(shè)出點M的坐標(biāo),結(jié)合向量的坐標(biāo)關(guān)系來證明。
解析試題分析:解:(1)設(shè)橢圓的焦距為
,因為
,所以有
,故有
.
從而橢圓
的方程可化為:
① 知右焦點
的坐標(biāo)為(
),據(jù)題意有
所在的直線方程為:
. ②由①,②有:
.
③設(shè)
,弦
的中點
,由③及韋達定理有:
所以
,即為所求. 5分
(2)顯然
與
可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量
,有且只有一對實數(shù)
,使得等式
成立.設(shè)
,由(1)中各點的坐標(biāo)有:
,故
. 7分
又因為點
在橢圓
上,所以有
整理可得:
. ④
由③有:
.所以
⑤又點
在橢圓
上,故有
.
⑥將⑤,⑥代入④可得:
. 11分
所以,對于橢圓上的每一個點
,總存在一對實數(shù),使等式
成立,且
.
所以存在
,使得
.也就是:對于橢圓
上任意一點
,總存在
,使得等式
成立. 13分
考點:橢圓的方程和性質(zhì),以及向量的加減法
點評:解決的關(guān)鍵是根據(jù)橢圓的性質(zhì)以及直線與橢圓的位置關(guān)系的運用,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓C以拋物線
的焦點為右焦點,且經(jīng)過點A(2,3).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若
分別為橢圓的左右焦點,求
的角平分線所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:![]()
(1)求曲線C1的普通方程
(2)曲線C2的方程為
,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標(biāo)原點,焦點在
軸上,且過點
.![]()
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓
相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足![]()
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點
,焦點在x軸上,離心率為
的橢圓過點(
,
).![]()
(1)求橢圓的方程;
(2)設(shè)不過原點
的直線與該橢圓交于
、
兩點,滿足直線
,
,
的斜率依次成等比數(shù)列,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直接坐標(biāo)系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為
.
(1)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,
),判斷點P與直線L的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角坐標(biāo)系
中,一直角三角形
,
,B、D在
軸上且關(guān)于原點
對稱,
在邊
上,BD=3DC,△ABC的周長為12.若一雙曲線
以B、C為焦點,且經(jīng)過A、D兩點.![]()
⑴ 求雙曲線
的方程;
⑵ 若一過點
(
為非零常數(shù))的直線
與雙曲線
相交于不同于雙曲線頂點的兩點
、
,且
,問在
軸上是否存在定點
,使
?若存在,求出所有這樣定點
的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題p:函數(shù)
在
上是增函數(shù);命題q:方程
有兩個不相等的負實數(shù)根。求使得p
q是真命題的實數(shù)對
為坐標(biāo)的點的軌跡圖形及其面積。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com