【題目】已知橢圓C:
的右焦點(diǎn)為F(2,0),過(guò)點(diǎn)F的直線交橢圓于M、N兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l不經(jīng)過(guò)點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經(jīng)過(guò)定點(diǎn),若經(jīng)過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn);若不經(jīng)過(guò)定點(diǎn),請(qǐng)給出理由.
【答案】(Ⅰ)
; (Ⅱ)
.
【解析】
(Ⅰ)設(shè)
,由點(diǎn)差法可得
,MN的中點(diǎn)坐標(biāo)為
,則可得
,由此能求出橢圓C的方程.
(II)設(shè)直線AB:
,聯(lián)立方程
得:
由此利用韋達(dá)定理、直線斜率公式,結(jié)合已知條件能求出直線l經(jīng)過(guò)定點(diǎn)
.
(I)設(shè)
,則
,兩式相減得
,
,
又MN的中點(diǎn)坐標(biāo)為
,且M、N、F、Q共線
因?yàn)?/span>
,所以
,
因?yàn)?/span>
所以
,
所以橢圓C的方程為
.
(II)設(shè)直線AB:
,聯(lián)立方程
得:![]()
設(shè)
則
,
因?yàn)?/span>
,所以
,所以![]()
所以
,所以
,所以![]()
所以
,因?yàn)?/span>
,所以
,
所以直線AB:
,直線AB過(guò)定點(diǎn)
,
又當(dāng)直線AB斜率不存在時(shí),設(shè)AB:
,則
,因?yàn)?/span>![]()
所以
適合上式,所以直線AB過(guò)定點(diǎn)
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司將進(jìn)的一批單價(jià)為7元的商品,若按單價(jià)為10元銷(xiāo)售,每天可以賣(mài)出100個(gè),若每個(gè)商品的銷(xiāo)售價(jià)上漲1元,則每天的銷(xiāo)售量就減少10個(gè).
(1)設(shè)每個(gè)商品的銷(xiāo)售價(jià)上漲
元,每天的利潤(rùn)為
元,試寫(xiě)出函數(shù)關(guān)系式.
(2)當(dāng)每個(gè)商品的銷(xiāo)售價(jià)定為多少時(shí),每天的利潤(rùn)達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)D使得DE,DO,DF成等比數(shù)列,求![]()
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)2019年新年賀歲大片《流浪地球》自上映以來(lái)引發(fā)了社會(huì)的廣泛關(guān)注,受到了觀眾的普遍好評(píng).假設(shè)男性觀眾認(rèn)為《流浪地球》好看的概率為
,女性觀眾認(rèn)為《流浪地球》好看的概率為
.某機(jī)構(gòu)就《流浪地球》是否好看的問(wèn)題隨機(jī)采訪了4名觀眾.
(1)若這4名觀眾2男2女,求這4名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;
(2)若這4名觀眾都是男性,設(shè)X表示這4名觀眾中認(rèn)為《流浪地球》好看的人數(shù),求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于
的函數(shù)
,
(I)試求函數(shù)
的單調(diào)區(qū)間;
(II)若
在區(qū)間
內(nèi)有極值,試求a的取值范圍;
(III)
時(shí),若
有唯一的零點(diǎn)
,試求
.(注:
為取整函數(shù),表示不超過(guò)
的最大整數(shù),如
;以下數(shù)據(jù)供參考:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的一個(gè)焦點(diǎn)
,點(diǎn)
在橢圓
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)直線
平行于直線
(
坐標(biāo)原點(diǎn)),且與橢圓
交于
,
兩個(gè)不同的點(diǎn),若
為鈍角,求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱軸的幫圓C經(jīng)過(guò)點(diǎn)M(2,1),N
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),當(dāng)△AMB面積取得最大值時(shí),求直線AB的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com