【題目】已知雙曲線
(b>a>0),O為坐標原點,離心率
,點
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線
與雙曲線交于P、Q兩點,且
.求|OP|2+|OQ|2的最小值.
![]()
【答案】
1
;
2
.
【解析】試題分析:
(Ⅰ) 由
,可得
,故雙曲線方程為
,代入點
的坐標可得
,由此可得雙曲線方程. (Ⅱ)根據直線
的斜率存在與否分兩種情況求解.當斜率存在時,可根據一元二次方程根與系數的關系及兩點間的距離公式求解即可.當斜率不存在時直接計算可得結果.
試題解析:
(1)由
,可得
,
∴
,
∴ 雙曲線方程為
,
∵ 點
在雙曲線上,
∴
,
解得
,
∴ 雙曲線的方程為
.
(2)①當直線
的斜率存在時,設直線
的方程為
,
由
消去y整理得
,
∵直線
與雙曲線交于
兩點,
∴
.
設
,
,
則
,
由
得到:
,
即
,
∴
,
化簡得
.
∴
,
當
時上式取等號,且方程(*)有解.
②當直線
的斜率不存在時,設直線
的方程為
,則有
,
由
可得
,
可得
,解得
.
∴
.
∴
.
綜上可得
的最小值是24.
科目:高中數學 來源: 題型:
【題目】選修4﹣5:不等式選講
已知函數f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個不同的解,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在一個坡度一定的山坡AC的頂上有一高度為25m的建筑物CD,為了測量該山坡相對于水平地面的坡角θ,在山坡的A處測得∠DAC=15°,沿山坡前進50m到達B處,又測得∠DBC=45°,根據以上數據可得cosθ= . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xoy中,直線l的參數方程為
(t為參數)在極坐標系
與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸
中,曲線C的方程為
.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設曲線C與直線l交于點A、B,若點P的坐標為(1,1),求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,f(x)=log2(1+ax).
(1)求f(x2)的值域;
(2)若關于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一個元素,求實數a的取值范圍;
(3)當a>0時,對任意的t∈(
,+∞),f(x2)在[t,t+1]的最大值與最小值的差不超過4,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一輛汽車在某段路程中的行駛速度與時間的關系如下圖:
![]()
(Ⅰ)求圖中陰影部分的面積,并說明所求面積的實際意義;
(Ⅱ)假設這輛汽車的里程表在汽車行駛這段路程前的讀數為
,試將汽車行駛這段路程時汽車里程表讀數
表示為時間
的函數,并求出當汽車里程表讀數為
時,汽車行駛了多少時間?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某民營企業(yè)生產
兩種產品,根據市場調查與預測,
產品的利潤與投資成正比,其關系如圖甲,
產品的利潤與投資的算術平方根成正比,其關系如圖乙(注:利潤與投資單位:萬元).
![]()
(1)分別將
兩種產品的利潤表示為投資
(萬元)的函數關系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入
兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若直線
與曲線
滿足下列兩個條件:(
)直線
在點
處與曲線
相切; (
)曲線
在點
附近位于直線
的兩側,則稱直線
在點
處“切過”曲線
.下列命題正確的是__________.(寫出所有正確命題的編號)
①直線
在點
處“切過”曲線
;
②直線
在點
處“切過”曲線
;
③直線
在點
處“切過”曲線
;
④直線
在點
處“切過”曲線
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com