【題目】為推行“新課堂”教學法,某化學老師分別用傳統教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統計,結果如下表:記成績不低于70分者為“成績優良”.
分數 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100] |
甲班頻數 | 5 | 6 | 4 | 4 | 1 |
乙班頻數 | 1 | 3 | 6 | 5 | 5 |
(1)由以上統計數據填寫下面2×2列聯表,并判斷“成績優良與教學方式是否有關”?
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總計 |
現從上述40人中,學校按成績是否優良采用分層抽樣的方法抽取8人進行考核.在這8人中,記成績不優良的乙班人數為
,求
的分布列及數學期望.
附:
. 臨界值表
![]()
科目:高中數學 來源: 題型:
【題目】某廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本C(x)(萬
元),若年產量不足80千件,C(x)的圖象是如圖的拋物線,此時C(x)<0的解集為(﹣30,0),且C(x)的最小值是﹣75,若年產量不小于80千件,C(x)=51x+
﹣1450,每千件商品售價為50萬元,通過市場分析,該廠生產的商品能全部售完;![]()
(1)寫出年利潤L(x)(萬元)關于年產量x(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中位數為1010的一組數構成等差數列,其末項為 2015,則該數列的首項為__________.
【答案】5.
【解析】
設數列的首項為
,則
,所以
,故該數列的首項為
,所以答案應填:
.
【考點定位】等差中項.
【題型】填空題
【結束】
15
【題目】對于不等式
,則對區間
上的任意x都成立的實數t的取值范圍是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1的方程為
,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+
與雙曲線C2恒有兩個不同的交點A和B,且
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , 且S3=9,a2a4=21,數列{bn}滿足
,若
,則n的最小值為( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足
是等差數列,且b1=a1 , b4=a3 .
(1)求數列{an}和{bn}的通項公式;
(2)若
,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,A,B,C所對的邊分別為a,b,c,已知sinC=
.
(1)若a+b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點M(﹣1,0),N(1,0),曲線E上任意一點到M的距離均是到點N距離的
倍.
(1)求曲線E的方程;
(2)已知m≠0,設直線l1:x﹣my﹣1=0交曲線E于A,C兩點,直線l2:mx+y﹣m=0交曲線E于B,D兩點,C,D兩點均在x軸下方,求四邊形ABCD面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com