【題目】在平面直角坐標系xoy中,以O為極點,x軸的正半軸為極軸的極坐標系中,直線l的極坐標方程為θ=
,曲線C的參數(shù)方程為
.
(1)寫出直線l與曲線C的直角坐標方程;
(2)過點M平行于直線l1的直線與曲線C交于A、B兩點,若|MA||MB|=
,求點M軌跡的直角坐標方程.
【答案】
(1)解:直線l的極坐標方程為θ=
,所以直線斜率為1,直線l:y=x;
曲線C的參數(shù)方程為
.消去參數(shù)θ,
可得曲線 ![]()
(2)解:設點M(x0,y0)及過點M的直線為
由直線l1與曲線C相交可得:
,即:
,
x2+2y2=6表示一橢圓
取y=x+m代入
得:3x2+4mx+2m2﹣2=0
由△≥0得 ![]()
故點M的軌跡是橢圓x2+2y2=6夾在平行直線
之間的兩段弧
【解析】(1)利用極坐標與直角坐標方程的互化,直接寫出直線l的普通方程,消去參數(shù)可得曲線C的直角坐標方程;(2)設點M(x0 , y0)以及平行于直線l1的直線參數(shù)方程,直線l1與曲線C聯(lián)立方程組,通過|MA||MB|=
,即可求點M軌跡的直角坐標方程.通過兩個交點推出軌跡方程的范圍,
科目:高中數(shù)學 來源: 題型:
【題目】若ABC的三個頂點的坐標分別為A(4,0),B(6,7),C(0,3).
①求BC邊上的高所在直線的方程;
②求BC邊上的中線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)設△AOB的外接圓圓心為E. ![]()
(1)若⊙E與直線CD相切,求實數(shù)a的值;
(2)設點P在圓E上,使△PCD的面積等于12的點P有且只有三個,試問這樣的⊙E是否存在,若存在,求出⊙E的標準方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐的側棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD=
CD=2,點M在側棱上.
(1)求證:BC⊥平面BDP;
(2)若側棱PC與底面ABCD所成角的正切值為
,點M為側棱PC的中點,求異面直線BM與PA所成角的余弦值. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,g(x)=xlnx﹣a(x﹣1).
(1)求函數(shù)f(x)在點(4,f(4))處的切線方程;
(2)若對任意x∈(0,+∞),不等式g(x)≥0恒成立,求實數(shù)a的取值的集合M;
(3)當a∈M時,討論函數(shù)h(x)=f(x)﹣g(x)的單調性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,A,B兩點5條連線并聯(lián),它們在單位時間內能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時間內都通過的最大信息總量為ξ,則P(ξ≥8)= . ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還
升,
升,
升,1斗為10升,則下列判斷正確的是( )
A.
,
,
依次成公比為2的等比數(shù)列,且![]()
B.
,
,
依次成公比為2的等比數(shù)列,且![]()
C.
,
,
依次成公比為
的等比數(shù)列,且![]()
D.
,
,
依次成公比為
的等比數(shù)列,且![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當
時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
的部分圖象如圖所示.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)將函數(shù)
的圖象做怎樣的平移變換可以得到函數(shù)
的圖象;
(Ⅲ)若方程
在
上有兩個不相等的實數(shù)根,求
的取值范圍.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com