【題目】某3D打印機,其打出的產品質量按照百分制衡量,若得分不低于85分則為合格品,低于85分則為不合格品,商家用該打印機隨機打印了15件產品,得分情況如圖; ![]()
(1)寫出該組數據的中位數和眾數,并估計該打印機打出的產品為合格品的概率;
(2)若打印一件合格品可獲利54元,打印一件不合格品則虧損18元,記X為打印3件產品商家所獲得的利潤,在(1)的前提下,求隨機變量X的分布列和數學期望.
【答案】
(1)解:該組數據的中位數為87,眾數為92,打印的15件產品中,合格品有10件,由此可估計該打印機打出的產品為合格品的
概率為 ![]()
(2)解:隨機變量X可以取﹣54,18,90,162,
P(X=﹣54)=C30×(1﹣
)3=
,P(X=18)=C31×
×(1﹣
)2=
,P(X=90)=C32×(
)2×(1﹣
)1=
,P(X=162)=C33×(
)3=
,
X的分布列為
X | ﹣54 | 18 | 90 | 162 |
P |
|
|
|
|
∴隨機變量X的期望E(X)=(﹣54)×
+18×
+90×
+162×
=90
【解析】(1)利用莖葉圖直接求解該組數據的中位數為87,眾數為92,打印的15件產品中,合格品有10件,即可求解概率.(2)隨機變量X可以取﹣54,18,90,162,求出概率,列出分布列,然后求解期望即可.
【考點精析】關于本題考查的莖葉圖和離散型隨機變量及其分布列,需要了解莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少;在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐
中,底面
為平行四邊形,
底面
,
是棱
的中點,
且
.
![]()
(1)求證:
平面
;
(2)如果
是棱
上一點,且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
有如下性質:如果常數
,那么該函數在
上是減函數,在
上是增函數.
(1)已知
,
,
,利用上述性質,求函數
的單調區間和值域.
(2)對于(1)中的函數
和函數
,若對于任意的
,總存在
,使得
成立,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE=
BC,PB⊥AE. ![]()
(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的右焦點F(1,0),過F的直線l與橢圓C交于A,B兩點,當l垂直于x軸時,|AB|=3.
(1)求橢圓C的標準方程;
(2)在x軸上是否存在點T,使得
為定值?若存在,求出點T坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)解不等式
;
(2)若函數
在區間
上存在零點,求實數
的取值范圍;
(3)若函數
,其中
為奇函數,
為偶函數,若不等式
對任意
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com