(本小題滿分12分)如圖所示,四棱錐
中,
為正方形,
分別是線段
的中點(diǎn). 求證:
(1)
//平面
;
(2)平面
⊥平面
.![]()
(1)證明見解析(2) 證明見解析
解析試題分析:(1)
分別是線段
的中點(diǎn),
又∵
為正方形,
,
又
平面
,![]()
平面
,
∴
//平面
. ……6分
(2)∵
,又
,
∴
⊥
.
又
為正方形,∴
,
又
,∴
⊥平面
,
又![]()
平面
,
∴平面
⊥平面
. ……12分
考點(diǎn):本小題主要考查線面平行和面面垂直的證明,考查學(xué)生的空間想象能力和推理論證的嚴(yán)謹(jǐn)性.
點(diǎn)評(píng):證明空間線線、線面、面面平行或垂直時(shí),要靈活運(yùn)用判定定理和性質(zhì)定理,先搞清楚證明需要的條件,再去找條件,特別注意的是定理中的隱含條件也是不可缺少的,要把定理需要的條件一一列清楚.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖所示,四棱錐
中,底面
為正方形,
平面
,
,
,
,
分別為
、
、
的中點(diǎn).![]()
(1)求證:
;
(2)求平面EFG與平面ABCD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分為10分)
在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M;RQ,DB的延長線交于N;RP,DC的延長線交于K,求證:M、N、K三點(diǎn)共線.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),![]()
![]()
(I)求證:
平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點(diǎn)E到平面ACD的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示:一吊燈的下圓環(huán)直徑為4m,圓心為O,通過細(xì)繩懸掛在天花板上,圓環(huán)呈水平狀態(tài),并且與天花板的距離(即
)為2m,在圓環(huán)上設(shè)置三個(gè)等分點(diǎn)A1,A2,A3。點(diǎn)C為
上一點(diǎn)(不包含端點(diǎn)O、B),同時(shí)點(diǎn)C與點(diǎn)A1,A2,A3,B均用細(xì)繩相連接,且細(xì)繩CA1,CA2,CA3的長度相等。設(shè)細(xì)繩的總長為
,
(1)設(shè)∠CA1O =
(rad),將y表示成
的函數(shù)關(guān)系式;
(2)請(qǐng)你設(shè)計(jì)
,當(dāng)角
正弦值的大小是多少時(shí),細(xì)繩總長
最小,并指明此時(shí) BC應(yīng)為多長。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖, 在直三棱柱
中,
,
,
.
(1)求證:
;
(2)問:是否在
線段上存在一點(diǎn)
,使得
平面
?
若存在,請(qǐng)證明;若不存在,請(qǐng)說明理由。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)四棱錐
的底面是正方形,
,點(diǎn)E在棱PB上.若AB=
,![]()
(Ⅰ)求證:平面
;
(Ⅱ)若E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com