【題目】已知命題
:直線
與圓
有兩個交點(diǎn);命題:
.
(1)若
為真命題,求實數(shù)
的取值范圍;
(2)若
為真命題,
為假命題,求實數(shù)
的取值范圍.
【答案】(1)
;(2)
.
【解析】試題分析:先求出
分別為真命題時
的取值范圍:對命題
,利用圓心到直線的距離小于半徑,求得
.對命題
,利用三角恒等變形公式,將原不等式左邊轉(zhuǎn)化為
,求得其值域為
,故
.(1)
且
真,取
與
的交集,得
;(2)由于“
為真命題,
為假命題”所以分別求“
真
假”和“
假
真”時
的取值范圍,然后取并集即可.
試題解析:
∵
,∴
,
所以該圓的圓心為
,半徑為
,圓心到直線的距離
.
若
為真,則圓心到直線的距離小于半徑,即
,解得
.
若
為真,則
在
上有解,
因為
,又由
,得
,
所以
,
即
,故若
為真,則
...................6分
(1)若
為真,則應(yīng)滿足
,即
,
故實數(shù)
的取值范圍為
....................8分
(2)若
為真命題,
為假命題,則
一真一假,
若
真
假,則應(yīng)滿足
,
若
假
真,則應(yīng)滿足![]()
綜上所述,實數(shù)
的取值范圍為
..............12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,已知
,
,
底面
,且
,
,
為
的中點(diǎn),
在
上,且
.
![]()
(1)求證:平面
平面
;
(2)求證:
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 |
|
|
|
利潤 |
|
|
|
(1)求利潤
關(guān)于月份
的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測
月和
月的利潤;
(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過
萬?
相關(guān)公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本
(元)與月處理量
(噸)之間的函數(shù)關(guān)系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補(bǔ)貼.
(1)當(dāng)
時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
:
,焦點(diǎn)
,
為坐標(biāo)原點(diǎn),直線
(不垂直
軸)過點(diǎn)
且與拋物線
交于
兩點(diǎn),直線
與
的斜率之積為
.
(1)求拋物線
的方程;
(2)若
為線段
的中點(diǎn),射線
交拋物線
于點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆世界低碳經(jīng)濟(jì)大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題,某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新式藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本
(元)與月處理量
(噸)之間的函數(shù)關(guān)系可近似地表示為
,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補(bǔ)貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題
對任意實數(shù)
,不等式
恒成立;命題
方程
表示焦點(diǎn)在
軸上的雙曲線.
(1)若命題
為真命題,求實數(shù)
的取值范圍;
(2)若命題:“
”為真命題,且“
”為假命題,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R.
(I)若x=e是y=f(x)的極值點(diǎn),求實數(shù)a的值;
(Ⅱ)若函數(shù)y=f(x)﹣4e2只有一個零點(diǎn),求實數(shù)a的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2009年推出一種新型家用轎車,購買時費(fèi)用為
萬元,每年應(yīng)交付保險費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共
萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為
萬元,從第三年起,每年的維修費(fèi)均比上一年增加
萬元.
(1)設(shè)該輛轎車使用
年的總費(fèi)用(包括購買費(fèi)用、保險費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為
,求
的表達(dá)式;
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費(fèi)用最少)?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com