【題目】已知?jiǎng)狱c(diǎn)
滿足:
.
(1)求動(dòng)點(diǎn)
的軌跡
的方程;
(2)設(shè)過點(diǎn)
的直線
與曲線
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
(點(diǎn)
與點(diǎn)
不重合),證明:直線
恒過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
【答案】(1)
;(2)直線過定點(diǎn)
,證明見解析.
【解析】試題分析:(1)動(dòng)點(diǎn)
到點(diǎn)
,
的距離之和為
,且
,所以動(dòng)點(diǎn)
的軌跡為橢圓,從而可求動(dòng)點(diǎn)
的軌跡
的方程;(2)直線
的方程為:
,由
得
,,根據(jù)韋達(dá)定理可得
,直線
的方程為
,即可證明其過定點(diǎn).
試題解析:(1)由已知,動(dòng)點(diǎn)
到點(diǎn)
,
的距離之和為
,
且
,所以動(dòng)點(diǎn)
的軌跡為橢圓,而
,
,所以
,
所以,動(dòng)點(diǎn)
的軌跡
的方程:
.
(2)設(shè)
,
,則
,由已知得直線
的斜率存在,設(shè)斜率為
,則直線
的方程為: ![]()
由
得
,
所以
,
,
直線
的方程為:
,所以
,
令
,則
,
所以直線
與
軸交于定點(diǎn)
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,其中
表示
中的最小者.下列說法錯(cuò)誤的是
A. 函數(shù)
為偶函數(shù) B. 若
時(shí),有![]()
C. 若
時(shí),
D. 若
時(shí),![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列
中,已知公差
,
,且
,
,
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)求
.
【答案】(1)
;(2)100
【解析】試題分析:(1)根據(jù)題意
,
,
成等比數(shù)列得
得
求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得
,得
,由
,得
,∴
計(jì)算 即可得出結(jié)論
解析:(1)由題意可得,則
,
,
,即
,
化簡得
,解得
或
(舍去).
∴
.
(2)由(1)得
時(shí),
由
,得
,由
,得
,
∴
![]()
.
∴
.
點(diǎn)睛:對(duì)于數(shù)列第一問首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問前n項(xiàng)的絕對(duì)值的和問題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論
【題型】解答題
【結(jié)束】
18
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請(qǐng)將兩家公司各一名推銷員的日工資
(單位: 元) 分別表示為日銷售件數(shù)
的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為
,乙公司該推銷員的日工資為
(單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,解不等式
;
(2)若存在實(shí)數(shù)
,使得不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
若曲線
在點(diǎn)
處的切線平行于
軸,求函數(shù)
的單調(diào)區(qū)間;
若
時(shí),總有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日.在平昌冬奧會(huì)短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造中國男子冰上競速項(xiàng)目在冬奧會(huì)金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會(huì)期間累計(jì)觀看冬奧會(huì)的時(shí)間情況.收集了200位男生、100位女生累計(jì)觀看冬奧會(huì)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).又在100位女生中隨機(jī)抽取20個(gè)人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.
![]()
(1)將這20位女生的時(shí)間數(shù)據(jù)分成8組,分組區(qū)間分別為
,在答題卡上完成頻率分布直方圖;
(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會(huì)時(shí)間不少于30小時(shí)的概率;
(3)以(1)中的頻率估計(jì)100位女生中累計(jì)觀看時(shí)間小于20個(gè)小時(shí)的人數(shù).已知200位男生中累計(jì)觀看時(shí)間小于20小時(shí)的男生有50人請(qǐng)完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認(rèn)為“該校學(xué)生觀看冬奧會(huì)累計(jì)時(shí)間與性別有關(guān)”.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平頂山市公安局交警支隊(duì)依據(jù)《中華人民共和國道路交通安全法》第
條規(guī)定:所有主干道路凡機(jī)動(dòng)車途經(jīng)十字口或斑馬線,無論轉(zhuǎn)彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以
元罰款,記
分的行政處罰.如表是本市一主干路段監(jiān)控設(shè)備所抓拍的
個(gè)月內(nèi),機(jī)動(dòng)車駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 |
|
|
|
|
|
違章駕駛員人數(shù) |
|
|
|
|
|
(Ⅰ)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)
與月份
之間的回歸直線方程
;
(Ⅱ)預(yù)測該路段
月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有
張卡片分別寫有數(shù)字
,從中任取
張,可排出不同的四位數(shù)個(gè)數(shù)為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com