【題目】某公司為提高市場銷售業(yè)績,設(shè)計(jì)了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn).運(yùn)作一年后,對“采取促銷”和“沒有采取促銷”的營銷網(wǎng)點(diǎn)各選了50個(gè),對比上一年度的銷售情況,分別統(tǒng)計(jì)了它們的年銷售總額,并按年銷售總額增長的百分點(diǎn)分成5組:
,
,
,
,
,分別統(tǒng)計(jì)后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個(gè)百分點(diǎn)及以上的營銷網(wǎng)點(diǎn)為“精英店”.
“采用促銷”的銷售網(wǎng)點(diǎn)![]()
“不采用促銷”的銷售網(wǎng)點(diǎn)![]()
(1)請根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有
的把握認(rèn)為“精英店與采促銷活動(dòng)有關(guān)”;
采用促銷 | 無促銷 | 合計(jì) | |
精英店 | |||
非精英店 | |||
合計(jì) | 50 | 50 | 100 |
(2)某“精英店”為了創(chuàng)造更大的利潤,通過分析上一年度的售價(jià)
(單位:元)和日銷量
(單位:件)(
)的一組數(shù)據(jù)后決定選擇
作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的![]()
|
|
|
|
|
|
|
45.8 | 395.5 | 2413.5 | 4.6 | 21.6 |
|
|
①根據(jù)上表數(shù)據(jù)計(jì)算
,
的值;
②已知該公司產(chǎn)品的成本為10元/件,促銷費(fèi)用平均5元/件,根據(jù)所求出的回歸模型,分析售價(jià)
定為多少時(shí)日利潤
可以達(dá)到最大.
附①:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
附②:對應(yīng)一組數(shù)據(jù)
,
其回歸直線
的斜率和截距的最小二乘法估計(jì)分別為
,
.
【答案】(1)有
的把握認(rèn)為“精英店與促銷活動(dòng)有關(guān)”; (2)①
.
②當(dāng)售價(jià)
元時(shí),日利潤達(dá)到最大為
元.
【解析】
(1)根據(jù)圖表補(bǔ)全列聯(lián)表,再計(jì)算
判斷即可.
(2)根據(jù)線性回歸方程的方法求解函數(shù)表達(dá)式,再求導(dǎo)分析單調(diào)性與最值即可.
(1)
采用促銷 | 無促銷 | 合計(jì) | |
精英店 | 35 | 20 | 55 |
非精英店 | 15 | 30 | 45 |
合計(jì) | 50 | 50 | 100 |
因?yàn)?/span>
,
有
的把握認(rèn)為“精英店與促銷活動(dòng)有關(guān)”.
(2)①由公式可得:
,
,
所以回歸方程為
.
②若售價(jià)為
,單件利潤為
,日銷售為
,
故日利潤
,
,
當(dāng)
時(shí),
單調(diào)遞增;
當(dāng)
時(shí),
單調(diào)遞減.
故當(dāng)售價(jià)
元時(shí),日利潤達(dá)到最大為
元.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是圓柱體
的一條母線,
過底面圓的圓心
,
是圓
上不與
、
重合的任意一點(diǎn),已知棱
,
,
.
![]()
(1)求異面直線
與平面
所成角的大小;
(2)將四面體
繞母線
旋轉(zhuǎn)一周,求
三邊旋轉(zhuǎn)過程中所圍成的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
,如果存在實(shí)數(shù)
(
,且
不同時(shí)成立),使得
對
恒成立,則稱函數(shù)
為“
映像函數(shù)”.
(1)判斷函數(shù)
是否是“
映像函數(shù)”,如果是,請求出相應(yīng)的
的值,若不是,請說明理由;
(2)已知函數(shù)
是定義在
上的“
映像函數(shù)”,且當(dāng)
時(shí),
.求函數(shù)
(
)的反函數(shù);
(3)在(2)的條件下,試構(gòu)造一個(gè)數(shù)列
,使得當(dāng)
時(shí),
,并求
時(shí),函數(shù)
的解析式,及
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】![]()
(本題滿分15分)已知m>1,直線
,
橢圓
,
分別為橢圓
的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線
過右焦點(diǎn)
時(shí),求直線
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
兩點(diǎn),
,
的重心分別為
.若原點(diǎn)
在以線段
為直徑的圓內(nèi),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半圓
的直徑的兩端點(diǎn)為
,點(diǎn)
在半圓
及直徑
上運(yùn)動(dòng),若將點(diǎn)
的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到點(diǎn)
,記點(diǎn)
的軌跡為曲線
.
(1)求曲線
的方程;
(2)若稱封閉曲線上任意兩點(diǎn)距離的最大值為該曲線的“直徑”,求曲線
的“直徑”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為一個(gè)等腰三角形形狀的空地,腰CA的長為3(百米),底AB的長為4(百米).現(xiàn)決定在該空地內(nèi)筑一條筆直的小路EF(寬度不計(jì)),將該空地分成一個(gè)四邊形和一個(gè)三角形,設(shè)分成的四邊形和三角形的周長相等、面積分別為S1和S2.
![]()
(1) 若小路一端E為AC的中點(diǎn),求此時(shí)小路的長度;
(2) 求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,給定
個(gè)整點(diǎn)
,其中
.
(Ⅰ)當(dāng)
時(shí),從上面的
個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn)
,求
的所有可能值;
(Ⅱ)從上面
個(gè)整點(diǎn)中任取
個(gè)不同的整點(diǎn),
.
(i)證明:存在互不相同的四個(gè)整點(diǎn)
,滿足
,
;
(ii)證明:存在互不相同的四個(gè)整點(diǎn)
,滿足
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)若
時(shí),討論
的單調(diào)性;
(2)設(shè)
,若
有兩個(gè)零點(diǎn),求
的取值范圍
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com