【題目】已知函數
(
為常數,
),且數列
是首項為2,公差為2的等差數列.
(1)若
,當
時,求數列
的前
項和
;
(2)設
,如果
中的每一項恒小于它后面的項,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知
分別是直線
和
上的兩個動點,線段
的長為
,
是
的中點.
(1)求動點
的軌跡
的方程;
(2)若過點(1,0)的直線
與曲線
交于不同兩點
.
①當
時,求直線
的方程;
②試問在
軸上是否存在點
,使
恒為定值?若存在,求出
點的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓
,點
是直線
上的一動點,過點
作圓
的切線
,切點為
.
(1)當切線
的長度為
時,求點
的坐標;
(2) 若
的外接圓為圓
,試問:當
在直線
上運動時,圓
是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.
(3)求線段
長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某玩具生產公司每天計劃生產衛兵、騎兵、傘兵這三種玩具共100個,生產一個衛兵需5分鐘,生產一個騎兵需7分鐘,生產一個傘兵需4分鐘,已知總生產時間不超過10小時,若生產一個衛兵可獲利潤5元,生產一個騎兵可獲利潤6元,生產一個傘兵可獲利潤3元.
(1)用每天生產的衛兵個數
與騎兵個數
表示每天的利潤
(元);
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(
為常數,
是自然對數的底數),曲線
在點
處的切線與
軸平行.
(1)求
的值;
(2)求
的單調區間;
(3)設
,其中
為
的導函數.證明:對任意
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正四面體
的頂點
、
、
分別在兩兩垂直的三條射線
,
,
上,則在下列命題中,錯誤的是( )
![]()
A.
是正三棱錐
B. 直線
與平面
相交
C. 直線
與平面
所成的角的正弦值為![]()
D. 異面直線
和
所成角是![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com