【題目】在
中,內(nèi)角
的對(duì)邊分別為
,已知
.
(1)求角
的值;
(2)若
,當(dāng)
取最小值時(shí),求
的面積.
【答案】(1)
(2)![]()
【解析】
試題分析:方法一:(Ⅰ)利用正弦定理、誘導(dǎo)公式、兩角和的正弦公式化簡已知的式子,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出角C;(Ⅱ)利用余弦定理列出方程,由條件和完全平方公式化簡后,利用基本不等式求出c的最小值,由面積公式求出△ABC的面積;方法二:(Ⅰ)利用余弦定理化簡已知的式子得到邊的關(guān)系,由余弦定理求出cosC的值,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出角C;(Ⅱ)利用余弦定理列出方程,結(jié)合條件消元后,利用一元二次函數(shù)的性質(zhì)求出c的最小值,由面積公式求出△ABC的面積
試題解析:解法一(1)∵
,∴
……………………1分
∴
……………2分
即
……………3分
∴
4分
∵
∴
…………5分
又∵
是三角形的內(nèi)角,∴
……6分
(2)由余弦定理得:
…………7分
∵
,故
8分
∴
(當(dāng)且僅當(dāng)
時(shí)等號(hào)成立) ………10分
∴
的最小值為2,故
……12分
解法二:(1)∵
,∴
………1分
∴
,即
…………3分
∴
…5分
又∵
是三角形的內(nèi)角,∴
6分
(2)由已知,
,即
,故:
……………8分
∴
…………10分
∴當(dāng)
時(shí),
的最小值為2,故
…………12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
.
⑴當(dāng)
,求函數(shù)
在區(qū)間
上的極值;
⑵當(dāng)
時(shí),函數(shù)
只有一個(gè)零點(diǎn),求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶假期是實(shí)施免收小型客車高速通行費(fèi)的重大節(jié)假日,有一個(gè)群名為“天狼星”的自駕游車隊(duì),該車隊(duì)是由31輛身長約為
(以
計(jì)算)的同一車型組成,行程中經(jīng)過一個(gè)長為2725
的隧道(通過隧道的車速不超過
),勻速通過該隧道,設(shè)車隊(duì)的速度為
,根據(jù)安全和車流的需要,當(dāng)
時(shí),相鄰兩車之間保持
的距離;當(dāng)
時(shí),相鄰兩車之間保持
的距離,自第一輛車車頭進(jìn)入隧道至第31輛車車尾離開隧道所用的時(shí)間
.
(1)將
表示成為
的函數(shù);
(2)求該車隊(duì)通過隧道時(shí)間
的最小值及此時(shí)車隊(duì)的速度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
為常數(shù),
),且數(shù)列
是首項(xiàng)為2,公差為2的等差數(shù)列.
(1)若
,當(dāng)
時(shí),求數(shù)列
的前
項(xiàng)和
;
(2)設(shè)
,如果
中的每一項(xiàng)恒小于它后面的項(xiàng),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如右表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( )
![]()
A.12萬元 B.16萬元
C.17萬元 D.18萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示.
![]()
(1)請(qǐng)將字母
標(biāo)記在長方體相應(yīng)的頂點(diǎn)處(不需說明理由);
(2)在長方體中,判斷直線
與平面
的位置關(guān)系,并證明你的結(jié)論;
(3)在長方體中,設(shè)
的中點(diǎn)為
,且
,
,求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
![]()
(1)在區(qū)間
上畫出函數(shù)
的圖象;
(2)設(shè)集合
,
.試判斷集合
和
之間的關(guān)系,并給出證明;
(3)當(dāng)
時(shí),求證:在區(qū)間
上,
的圖象位于函數(shù)
圖象的上方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在
軸正半軸上的圓
與直線
相切,與
軸交于
兩點(diǎn),且
.
![]()
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
的直線
與圓
交于不同的兩點(diǎn)
,若設(shè)點(diǎn)
為
的重心,當(dāng)
的面積為
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
底面
,四邊形
為正方形,點(diǎn)
分別為線段
上的點(diǎn),
.
![]()
(1)求證:平面
平面
;
(2)求證:當(dāng)點(diǎn)
不與點(diǎn)
重合時(shí),
平面
;
(3)當(dāng)
時(shí),求點(diǎn)
到直線
距離的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com