【題目】某學校對高三學生一次模擬考試的數學成績進行分析,隨機抽取了部分學生的成績,得到如圖所示的成績頻率分布直方圖.![]()
(1)根據頻率分布直方圖估計這次考試全校學生數學成績的眾數、中位數和平均值;
(2)若成績不低于80分為優秀成績,視頻率為概率,從全校學生中有放回的任選3名學生,用變量ξ表示3名學生中獲得優秀成績的人數,求變量ξ的分布列及數學期望E(ξ).
【答案】
(1)解:由頻率分布直方圖得[70,80)對應的小矩形最高,
∴眾數為:
=75,
∵[50,70)的頻率為(0.012+0.018)×10=0.3,
[70,80)的頻率為0.04×10=0.4,
∴中位數為:70+
=75,
平均值為:55×0.12+65×0.18+75×0.40+85×0.22+95×0.08=74.6
所以綜合素質成績的平均值為74.6.
(2)解:由頻率分布直方圖知優秀率為10×(0.008+0.022)=0.3,
由題意知ξ~B(3,0.3),
,
,
,
,
![]()
故ξ的分布列為
P | 0 | 1 | 2 | 3 |
ξ | 0.343 | 0.441 | 0.189 | 0.027 |
E(ξ)=0×0.343+1×0.441+2×0.189+3×0.027=0.9.
【解析】(1)由頻率分布直方圖得[70,80)對應的小矩形最高,能出眾數,由頻率分布直方圖的性質能求出中位數和綜合素質成績的平均值.(2)由頻率分布直方圖知優秀率為0.3,由題意知ξ~B(3,0.3),由此能求出ξ的分布列和E(ξ).
【考點精析】根據題目的已知條件,利用平均數、中位數、眾數和離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握⑴平均數、眾數和中位數都是描述一組數據集中趨勢的量;⑵平均數、眾數和中位數都有單位;⑶平均數反映一組數據的平均水平,與這組數據中的每個數都有關系,所以最為重要,應用最廣;⑷中位數不受個別偏大或偏小數據的影響;⑸眾數與各組數據出現的頻數有關,不受個別數據的影響,有時是我們最為關心的數據;在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】某單位N名員工參加“社區低碳你我他”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布圖如圖所示,下表是年齡的頻率分布表.
![]()
![]()
(1)現要從年齡較小的第
組中用分層抽樣的方法抽取6人,則年齡第
組人數分別是多少?
(2)在(1)的條件下,從這6中隨機抽取2參加社區宣傳交流活動,X表示第3組中抽取的人數,求X的分布列和期望值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時期偉大的數學家,中國古典數學理論的奠基人之一,他的杰作《九章算術注》和《海島算經》是中國寶貴的古代數學遺產. 《九章算術·商功》中有這樣一段話:“斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:“此術臑者,背節也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的“鱉臑(biē nào)”,就是在對長方體進行分割時所產生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐
中,
垂直于平面
,
垂直于
,且
,則三棱錐
的外接球的球面面積為__________.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,且AB=4,BC=CD=ED=EA=2. ![]()
(1)求二面角E﹣AB﹣D的正切值;
(2)在線段CE上是否存在一點F,使得平面EDC⊥平面BDF?若存在,求
的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校有高級教師20人,中級教師30人,其他教師若干人,為了了解該校教師的工資收入情況,擬按分層抽樣的方法從該校所有的教師中抽取20人進行調查.已知從其他教師中共抽取了10人,則該校共有教師人.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={
};
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com