【題目】某校高一年級(jí)共有
名學(xué)生,其中男生
名,女生
名,該校組織了一次口語(yǔ)模擬考試(滿分為
分).為研究這次口語(yǔ)考試成績(jī)?yōu)楦叻质欠衽c性別有關(guān),現(xiàn)按性別采用分層抽樣抽取
名學(xué)生的成績(jī),按從低到高分成
,
,
,
,
,
,
七組,并繪制成如圖所示的頻率分布直方圖.已知
的頻率等于
的頻率,
的頻率與
的頻率之比為
,成績(jī)高于
分的為“高分”.
![]()
(1)估計(jì)該校高一年級(jí)學(xué)生在口語(yǔ)考試中,成績(jī)?yōu)椤案叻帧钡娜藬?shù);
(2)請(qǐng)你根據(jù)已知條件將下列
列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為“該校高一年級(jí)學(xué)生在本次口語(yǔ)考試中成績(jī)及格(
分以上(含
分)為及格)與性別有關(guān)”?
口語(yǔ)成績(jī)及格 | 口語(yǔ)成績(jī)不及格 | 合計(jì) | |
男生 |
|
| |
女生 |
|
| |
合計(jì) |
|
附臨界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】試題分析:(1)根據(jù)題意,可設(shè)
的頻率為
,由頻率性質(zhì),即各組頻率之和為1,建立關(guān)于
的方程,求出未知數(shù)
的值,從而算出
的頻率,由此問(wèn)題可得解;(2)由(1),根據(jù)已知條件,結(jié)合男女生的人數(shù)比,即可完成列聯(lián)表,再根據(jù)所提供的觀測(cè)值的計(jì)算公式,算出觀測(cè)值,再比對(duì)臨界值表,從而可問(wèn)題可得解.
試題解析:(1)設(shè)
的頻率為
,
則
的頻率為
,
的頻率為
.
則
,
解得
.
故
的頻率為
,
的頻率為
.
故估計(jì)該校高一年級(jí)學(xué)生在口語(yǔ)考試中,成績(jī)?yōu)椤案叻帧钡念l率為
.
故估計(jì)該校高一年級(jí)學(xué)生在口語(yǔ)考試中,成績(jī)?yōu)椤案叻帧钡娜藬?shù)為
.
(2)根據(jù)已知條件得列聯(lián)表如下:
口語(yǔ)成績(jī)及格 | 口語(yǔ)成績(jī)不及格 | 合計(jì) | |
男生 |
|
| 40 |
女生 |
|
| 60 |
合計(jì) | 70 | 30 |
|
因?yàn)?/span>
,
所以有
的把握認(rèn)為“該校高一年級(jí)學(xué)生在本次口語(yǔ)考試中成績(jī)及格與性別有關(guān)”.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)
為圓
上的動(dòng)點(diǎn),點(diǎn)
在
軸上的投影為
,動(dòng)點(diǎn)
滿足
,動(dòng)點(diǎn)
的軌跡為
.
(1)求
的方程;
(2)設(shè)
與
軸正半軸的交點(diǎn)為
,過(guò)點(diǎn)
的直線
的斜率為
,
與
交于另一點(diǎn)為
.若以點(diǎn)
為圓心,以線段
長(zhǎng)為半徑的圓與
有4個(gè)公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)行籃球三分球投籃比賽,甲每次投中的概率為
,乙每次投中的概率為
,每人分別進(jìn)行三次投籃.
(I)記甲投中的次數(shù)為
,求
的分布列及數(shù)學(xué)期望
;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投進(jìn)2次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(I)若函數(shù)
的圖象在
處的切線斜率為1,求實(shí)數(shù)
的值;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)
在[1,2]上是減函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
的一個(gè)內(nèi)角為
,并且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則
的面積為( )
A. 15 B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐P﹣ABC中,PA⊥平面ABC,△ABC是邊長(zhǎng)為2的等邊三角形,且三棱錐P﹣ABC的外接球表面積為
,則直線PC與平面PAB所成角的正切值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四棱柱
中,
,
為
中點(diǎn),
為
中點(diǎn).
![]()
(1)證明:
平面
;
(2)若直線
與平面
所成的角為
,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線AC與BD的交點(diǎn),M是PD的中點(diǎn).
![]()
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com