已知橢圓C的長軸長為
,一個焦點(diǎn)的坐標(biāo)為(1,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=kx與橢圓C交于A,B兩點(diǎn),點(diǎn)P為橢圓的右頂點(diǎn).
(ⅰ)若直線l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為
,
,求證:
為定值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
動圓
過定點(diǎn)![]()
,且與直線
相切,其中
.設(shè)圓心
的軌跡
的程為![]()
(1)求
;
(2)曲線
上的一定點(diǎn)
(![]()
0) ,方向向量
的直線
(不過P點(diǎn))與曲線
交與A、B兩點(diǎn),設(shè)直線PA、PB斜率分別為
,
,計算
;
(3)曲線
上的兩個定點(diǎn)
、
,分別過點(diǎn)
作傾斜角互補(bǔ)的兩條直線
分別與曲線
交于
兩點(diǎn),求證直線
的斜率為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
的兩個焦點(diǎn)為
的曲線C上.(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為
求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
在點(diǎn)
處的切線
平行直線
,且點(diǎn)
在第三象限.
(1)求
的坐標(biāo);
(2)若直線
, 且
也過切點(diǎn)
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標(biāo)系
中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,右頂點(diǎn)為
,設(shè)點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若
是橢圓上的動點(diǎn),求線段
中點(diǎn)
的軌跡方程;
(3)過原點(diǎn)
的直線交橢圓于點(diǎn)
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,且過點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)
,若
是橢圓上的動點(diǎn),求線段
的中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求滿足下列條件的橢圓方程長軸在
軸上,長軸長等于12,離心率等于
;橢圓經(jīng)過點(diǎn)
;橢圓的一個焦點(diǎn)到長軸兩端點(diǎn)的距離分別為10和4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,且過點(diǎn)
.![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對角線A C、BD過原點(diǎn)O,若
,
(i) 求
的最值.
(ii) 求證:四邊形ABCD的面積為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(a>b>0)的離心率e=
,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-
,0).若
,求直線l的傾斜角;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com