(本小題滿分l2分)
設(shè)橢圓
的焦點(diǎn)分別為
、
,直線
:
交
軸于點(diǎn)
,且
.
(1)試求橢圓的方程;
(2)過
、
分別作互相垂直的兩直線與橢圓分別交于
、
、
、
四點(diǎn)(如圖所示),試求四邊形
面積的最大值和最小值.
![]()
(1)橢圓方程為![]()
(2)
.故四邊形
面積的最大值為4,最小值為![]()
【解析】
解:(1)由題意,![]()
為
的中點(diǎn)
即:橢圓方程為
…………………(5分)
(2)方法一:當(dāng)直線
與
軸垂直時(shí),
,此時(shí)
,四邊形
的面積
.同理當(dāng)
與
軸垂直時(shí),也有四邊形
的面積
. 當(dāng)直線
,
均與
軸不垂直時(shí),設(shè)
:
,代入消去
得:
設(shè)
所以,
, 所以,
,同理
所以四邊形的面積![]()
![]()
令
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052408245767189502/SYS201205240826253906613889_DA.files/image031.png">當(dāng)
,且S是以u為自變量的增函數(shù),所以
.
綜上可知,
.故四邊形
面積的最大值為4,最小值為
.…(12分)
方法二:用直線的參數(shù)方程中
的幾何意義.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分l2分)已知數(shù)列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,其中b1=-
,bn+1=-
Sn(n∈N*).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若Tn=
+
+…+
,求Tn的表達(dá)式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分l2分)已知橢圓的的右頂點(diǎn)為A,離心率
,過左焦點(diǎn)
作直線
與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線
交于點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段
為直徑的圓經(jīng)過焦點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三年級第五次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分l2分)(注意:在試題卷上作答無效)
求經(jīng)過A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓的方程
(I)求出圓的標(biāo)準(zhǔn)方程
(II)求出(I)中的圓與直線3x+4y=0相交的弦長AB
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分l2分)設(shè)命題
:函數(shù)
(
)的值域是
;命題
:指數(shù)函數(shù)
在
上是減函數(shù).若命題“
或
”是假命題,求實(shí)數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分l2分)求垂直于直線
并且與曲線
相切的直線方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com