【題目】已知圓C:x2+y2+2x﹣2y+1=0和拋物線E:y2=2px(p>0),圓C與拋物線E的準線交于M、N兩點,△MNF的面積為p,其中F是E的焦點.
(1)求拋物線E的方程;
(2)不過原點O的動直線l交該拋物線于A,B兩點,且滿足OA⊥OB,設點Q為圓C上任意一動點,求當動點Q到直線l的距離最大時直線l的方程.
【答案】(1)y2=4x (2)y=5x﹣20
【解析】
(1)求得圓的圓心和半徑,拋物線的焦點和準線方程,由三角形的面積公式和圓的弦長公式,計算可得
,可得拋物線的方程;
(2)不過原點
的動直線
的方程設為
,
,聯立拋物線方程,運用韋達定理和兩直線垂直的條件,解方程可得
,即有動直線恒過定點
,結合圖象可得直線
時,
到直線
的距離最大,求得直線的斜率,可得所求方程.
解:(1)圓
的圓心
,半徑為1,
拋物線
的準線方程為
,
,
,
由
的面積為
,可得
,即
,
可得
經過圓心
,可得
.則拋物線的方程為
;
(2)不過原點
的動直線
的方程設為
,
,
聯立拋物線方程
,可得
,
設
,
,
,
,可得
,
,
由
可得
,即
,即
,解得
,
則動直線
的方程為
,恒過定點
,
當直線
時,
到直線
的距離最大,
由
,可得
到直線
的距離的最大值為
,
此時直線
的斜率為
,
直線
的斜率為5,可得直線
的方程為
.
![]()
科目:高中數學 來源: 題型:
【題目】設橢圓
:
的左、右焦點分別為
,
,下頂點為
,橢圓
的離心率是
,
的面積是
.
(1)求橢圓
的標準方程.
(2)直線
與橢圓
交于
,
兩點(異于
點),若直線
與直線
的斜率之和為1,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發現:“平面內到兩個定點
,
的距離之比為定值
的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標系
中,
,
,點
滿足
.設點
的軌跡為
,下列結論正確的是( )
A.
的方程為![]()
B.在
上存在點
,使得![]()
C.當
,
,
三點不共線時,射線
是
的平分線
D.在三棱錐中
,
面
,且
,
,
,該三棱錐體積最大值為12
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線 y = x3 + x-2 在點 P0 處的切線
平行于直線
4x-y-1=0,且點 P0 在第三象限,
⑴求P0的坐標;
⑵若直線
, 且 l 也過切點P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的焦點
恰好是橢圓
的右焦點.
(1)求實數
的值及拋物線
的準線方程;
(2)過點
任作兩條互相垂直的直線分別交拋物線
于
、
和
、
點,求兩條弦的弦長之和
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在底面為正方形的四棱錐P—ABCD中,AB=2,PA=4,PB=PD=
,AC與BD相交于點O,E,G分別為PD,CD中點,
(1)求證:EO//平面PBC;
(2)設線段BC上點F滿足BC=3BF,求三棱錐E—OFG的體積.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com