【題目】已知直線
和
.
(1)若
,求實數(shù)
的值;
(2)若
,求實數(shù)
的值.
【答案】(1)
;(2)
.
【解析】
(1)借助兩直線垂直的充要條件建立方程求解;(2)借助兩直線平行充要條件建立方程求解.
(1)若
,則
.
(2)若
,則
或2.
經(jīng)檢驗,
時,
與
重合,
時,符合條件,∴
.
【點晴】
解析幾何是運用代數(shù)的方法和知識解決幾何問題一門學科,是數(shù)形結(jié)合的典范,也是高中數(shù)學的重要內(nèi)容和高考的熱點內(nèi)容.解答本題時充分運用和借助題設條件中的垂直和平行條件,建立了含參數(shù)的直線的方程,然后再運用已知條件進行分析求解,從而將問題進行轉(zhuǎn)化和化歸,進而使問題獲解.如本題的第一問中求參數(shù)
的值時,是直接運用垂直的充要條件建立方程,這是方程思想的運用;再如第二問中求參數(shù)的值時也是運用了兩直線平行的條件,但要注意的是這個條件不是兩直線平行的充要條件,所以一定代回進行檢驗,這也是學生經(jīng)常會出現(xiàn)錯誤的地方.
科目:高中數(shù)學 來源: 題型:
【題目】設向量
,
,令函數(shù)
,若函數(shù)
的部分圖象如圖所示,且點
的坐標為
.
![]()
(1)求點
的坐標;
(2)求函數(shù)
的單調(diào)增區(qū)間及對稱軸方程;
(3)若把方程
的正實根從小到大依次排列為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)),在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線
的普通方程和直線
的傾斜角;
(2)設點
,直線
和曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2
.
(2)若a+b=1,求證:
+
+
≥12.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知
,
,動點
滿足
,設動點
的軌跡為曲線
.
(1)求動點
的軌跡方程,并說明曲線
是什么圖形;
(2)過點
的直線
與曲線
交于
兩點,若
,求直線
的方程;
(3)設
是直線
上的點,過
點作曲線
的切線
,切點為
,設
,求證:過
三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E:
=1(a>b>0)的離心率為
,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣
交橢圓E于A,B兩點,C是橢圓E上的一點,直線OC的斜率為k2 , 且看k1k2=
,M是線段OC延長線上一點,且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】校運動會高二理三個班級的3名同學報名參加鉛球、跳高、三級跳遠3個運動項目,每名同學都可以從3個運動項目中隨機選擇一個,且每個人的選擇相互獨立.
(1)求3名同學恰好選擇了2個不同運動項目的概率;
(Ⅱ)設選擇跳高的人數(shù)為
試求
的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓
:
,點
.
![]()
(1)求經(jīng)過點
且與圓
相切的直線
的方程;
(2)過點
的直線與圓
相交于
、
兩點,
為線段
的中點,求線段
長度的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com