【題目】為對南康區和于都縣兩區縣某次聯考成績進行分析,隨機抽查了兩地一共10000名考生的成績,根據所得數據畫了如下的樣本頻率分布直方圖.
![]()
(1)求成績在
的頻率;
(2)根據頻率分布直方圖算出樣本數據平均數;
(3)為了分析成績與班級、學校等方面的關系,必須按成績再從這10000人中用分層抽樣方法抽出20人作進一步分析,則成績在
的這段應抽多少人?
【答案】(1)
;(2)
;(3)
人.
【解析】試題分析:(1)根據頻率分布直方圖,求出成績在[600,650)的頻率即可;
(2)利用頻率分布直方圖,求出樣本數據的平均數即可;
(3)求出成績在[550,600)的頻率與頻數,計算出用分層抽樣方法在這段應抽取的人數.
試題解析:
(1)根據頻率分布直方圖,得:成績在[600,650)的頻率為
0.003×(650﹣600)=0.15;
(2)
,
,
,
(3)成績在[550,600)的頻率為:0.005×(600﹣550)=0.25,
所以10000名考生中成績在[550,600)的人數為:0.25×10000=2500(人),
再從10000人用分層抽樣方法抽出20人,
則成績在[550,600)的這段應抽取20×
=5人.
科目:高中數學 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).
![]()
(1)求甲、乙兩人成績的平均數和中位數;
(2)現要從甲、乙兩人中選派一人參加比賽,從統計學的角度,你認為派哪位學生參加比較合適?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖 1,在直角梯形
中,
,且
.現以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使
平面與平面
垂直,
為
的中點,如圖 2.
(1)求證:
平面
;
(2)求證:
平面
;
(3)求點
到平面
的距離.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點M是棱AD的中點
![]()
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廣場有一塊不規則的綠地如圖所示,城建部門欲在該地上建造一個底座為三角形的環境標志,小李,小王設計的底座形狀分別為
,
,經測量
米,
米,
米, ![]()
(I)求
的長度;
(Ⅱ)若環境標志的底座每平方米造價為
元,不考慮其他因素,小李,小王誰的設計建造費用最低(請說明理由),最低造價為多少?(
)
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車進駐城市,綠色出行引領時尚.某市有統計數據顯示,2017年該市共享單車用戶年齡登記分布如圖1所示,一周內市民使用單車的頻率分布扇形圖如圖2所示.若將共享單車用戶按照年齡分為“年輕人”(20歲至39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內使用的次數為6次或6次以上的稱為“經常使用單車用戶”,使用次數為5次或不足5次的稱為“不常使用單車用戶”.已知在“經常使用單車用戶”中有
是“年輕人”.
![]()
(1)現對該市市民進行“經常使用共享單車與年齡關系”的調查,采用隨機抽樣的方法,抽取一個容量為200的樣本,請你根據圖表中的數據,補全下列
列聯表,并根據列聯表的獨立性檢驗,判斷能有多大把握可以認為經常使用共享單車與年齡有關?
![]()
(2)將頻率視為概率,若從該市市民中隨機任取3人,設其中經常使用共享單車的“非年輕人”人數為隨機變量
,求
的分布與期望.
(參考數據:獨立性檢驗界值表
,其中
)
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
:
的焦點為
,準線為
,三個點
,
,
中恰有兩個點在
上.
(1)求拋物線
的標準方程;
(2)過
的直線交
于
,
兩點,點
為
上任意一點,證明:直線
,
,
的斜率成等差數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com