【題目】如圖,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=1,CD=2,若將△BCD沿著BD折起至△BC'D,使得AD⊥BC'.
![]()
(1)求證:平面C'BD⊥平面ABD;
(2)求C'D與平面ABC'所成角的正弦值;
(3)M為BD中點(diǎn),求二面角M﹣AC'﹣B的余弦值.
【答案】(1)見解析(2)
;(3)
.
【解析】
(1)先證明
、
,再利用面面垂直的判定即可得證;
(2)先證明
面
,再求
即可得解;
(3)建立空間坐標(biāo)系,分別求出兩面的法向量即可得解.
(1)過點(diǎn)
作
的垂線交
于點(diǎn)
,得
,
,∴
,
又
,∴
,∴
,∴
,
又
,且
,
平面
,
∴
平面
,又
平面
,∴平面
⊥平面
;
(2)由(1)
平面
,可知:平面
⊥平面
,
又
,平面
平面
,
∴
面
,∴
與平面
所成角為
,
由(1)
平面
可知:
,∴
,∴
,
∴
,即
與平面
所成角的正弦值為
;
![]()
(3)以
為原點(diǎn),
、
所在直線分別為
軸、
軸建立如圖所示的空間直角坐標(biāo)系,由(1)
可知,
,
,
,
,
又
為
的中點(diǎn),∴
,
∴
,
,
,
∴平面
的一個(gè)法向量
,
平面
的一個(gè)法向量
,
∴
,
由圖可知二面角
的大小為銳角,
∴二面角
的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù)f(x)=ax2﹣2bx+8.
(1)設(shè)集合P={1,2,3}和Q={2,3,4,5},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間(﹣∞,2]上有零點(diǎn)且為減函數(shù)的概率?
(2)設(shè)集合P=[1,3]和Q[2,5],分別從集合P和Q中隨機(jī)取一個(gè)實(shí)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間(﹣∞,2]上有零點(diǎn)且為減函數(shù)的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
1(a>b>0),橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為9,最小值為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求橢圓C上的點(diǎn)到直線l:4x﹣5y+40=0的最小距離?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對(duì)消防知識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行消防知識(shí)競(jìng)賽.下圖(1)和圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按
分組,得到的頻率分布直方圖.
![]()
(1)請(qǐng)計(jì)算高一年級(jí)和高二年級(jí)成績(jī)小于60分的人數(shù);
(2)完成下面
列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級(jí)與消防常識(shí)的了解存在相關(guān)性”?
成績(jī)小于60分人數(shù) | 成績(jī)不小于60分人數(shù) | 合計(jì) | |
高一 | |||
高二 | |||
合計(jì) |
附:臨界值表及參考公式:
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
中,邊
,
,
所在直線的方程分別為
,
,
.
(1)求
邊上的高所在的直線方程;
(2)若圓
過直線
上一點(diǎn)及
點(diǎn),當(dāng)圓
面積最小時(shí),求其標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率
,過焦點(diǎn)且垂直于x軸的直線被橢圓截得的線段長(zhǎng)為3
(1)求橢圓的方程;
(2)已知P為直角坐標(biāo)平面內(nèi)一定點(diǎn),動(dòng)直線l:
與橢圓交于A、B兩點(diǎn),當(dāng)直線PA與直線PB的斜率均存在時(shí),若直線PA與PB的斜率之和為與t無關(guān)的常數(shù),求出所有滿足條件的定點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司近年來科研費(fèi)用支出
萬元與公司所獲得利潤(rùn)
萬元之間有如下的統(tǒng)計(jì)數(shù)據(jù):
x | 2 | 3 | 4 | 5 |
Y | 18 | 27 | 32 | 35 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該公司科研費(fèi)用支出為10萬元時(shí)公司所獲得的利潤(rùn).
參考公式:用最小二乘法求線性回歸方程
的系數(shù)公式:
![]()
參考數(shù)據(jù):2×18+3×27+4×32+5×35=420
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右頂點(diǎn)分別為
,長(zhǎng)軸長(zhǎng)為4,離心率為
.過右焦點(diǎn)
的直線
交橢圓
于
兩點(diǎn)(均不與
重合),記直線![]()
的斜率分別為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存在常數(shù)
,當(dāng)直線
變動(dòng)時(shí),總有
成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,四邊形
和
都是直角梯形,
,
,
,
,
,,
是
的中點(diǎn)。
(1)求證:
;
(2)已知
是
的中點(diǎn),求證:
;
(3)求直線
與平面
所成角的大小。
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com