【題目】已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.
(1)從A∪B中取出3個不同的元素組成三位數,則可以組成多少個?
(2)從集合A中取出1個元素,從集合B中取出3個元素,可以組成多少個無重復數字且比4000大的自然數?
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的兩個焦點分別為
,
,且點
在橢圓
上.
(1)求橢圓
的標準方程;
(2)設橢圓
的左頂點為
,過點
的直線
與橢圓
相交于異于
的不同兩點
,求
的面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等差數列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通項公式;
(Ⅱ)求數列{a2nbn}的前n項和(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關系,下表記錄了小李某月1號到5號每天打籃球時間x(單位:小時)與當天投籃命中率y之間的關系:
時間x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李這5天的平均投籃命中率為 ;用線性回歸分析的方法,預測小李該月6號打6小時籃球的投籃命中率為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg),其頻率分布直方圖如下:
![]()
![]()
(1)設兩種養殖方法的箱產量相互獨立,記A表示事件“舊養殖法的箱產量低于50kg,新養殖法的箱產量不低于50kg”,估計A的概率.
(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:
箱產量<50kg | 箱產量≥50kg | |
舊養殖法 | ||
新養殖法 |
(3)根據箱產量的頻率分布直方圖,求新養殖法箱產量的中位數的估計值(精確到0.01).
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
K2=![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系
中,已知橢圓
的離心率為
,左右焦點分別為
和
,以點
為圓心,以
為半徑的圓與以點
為圓心,以
為半徑的圓相交,且交點在橢圓
上.
(
)求橢圓
的方程.
(
)設橢圓
,
為橢圓
上任意一點,過點
的直線
交橢圓
于
、
兩點,射線
交橢圓
于點
.
①求
的值.
②求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,x1 , x2∈(0,
),且x1<x2 , 則下列結論中正確的是( )
A.(x1﹣x2)[f(x1)﹣f(x2)]<0
B.f(
)<f(
)
C.x1f(x2)>x2f(x1)
D.x2f(x2)>x1f(x1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com