【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量
(噸)與相應(yīng)的生產(chǎn)能耗
(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù),
![]()
(1)求
,
,
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(3)已知該廠技動(dòng)前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
已知
,
.
, ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足:
,
.
(
)求
,
,
的值.
(
)求證:數(shù)列
是等比數(shù)列.
(
)令
,如果對(duì)任意
,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點(diǎn).
![]()
![]()
下列結(jié)論中正確的個(gè)數(shù)有 ( )
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1.
④三棱錐N-A1BC的體積為
=
a3.
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D、E分別是AB、AC的中點(diǎn),M是直線DE上的動(dòng)點(diǎn).若△ABC的面積為2,則
+
2的最小值為 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(I)若a=1,求
在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù)
,使得函數(shù)
在
上的最小值為
?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構(gòu)成,曲線AB和曲線DE分別是頂點(diǎn)在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們?cè)诮狱c(diǎn)B、D處的切線相同,若橋的最高點(diǎn)C到水平面的距離H=6米,圓弧的弓高h(yuǎn)=1米,圓弧所對(duì)的弦長(zhǎng)BD=10米. ![]()
(1)求弧
所在圓的半徑;
(2)求橋底AE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:
與
軸相切.
(1)求
的值;
(2)求圓M在
軸上截得的弦長(zhǎng);
(3)若點(diǎn)
是直線
上的動(dòng)點(diǎn),過點(diǎn)
作直線
與圓M相切,
為切點(diǎn),求四邊形
面積的最小值.
【答案】(1)
(2)
(3) ![]()
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令
,得到關(guān)于
的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1)
∵圓M:
與
軸相切
∴
∴
(2) 令
,則
∴
∴
(3) ![]()
∵
的最小值等于點(diǎn)
到直線
的距離,
∴
∴![]()
∴四邊形
面積的最小值為
.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系
中,圓
的方程為
,且圓
與
軸交于
,
兩點(diǎn),設(shè)直線
的方程為
.
![]()
(1)當(dāng)直線
與圓
相切時(shí),求直線
的方程;
(2)已知直線
與圓
相交于
,
兩點(diǎn).
(。┤
,求實(shí)數(shù)
的取值范圍;
(ⅱ)直線
與直線
相交于點(diǎn)
,直線
,直線
,直線
的斜率分別為
,
,
,
是否存在常數(shù)
,使得
恒成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 ![]()
經(jīng)過點(diǎn)
,其離心率
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)動(dòng)直線
與橢圓
相切,切點(diǎn)為
,且
與直線
相交于點(diǎn)
.
試問:在
軸上是否存在一定點(diǎn),使得以
為直徑的圓恒過該定點(diǎn)?若存在,
求出該點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com