【題目】雙曲線
與橢圓
有相同的焦點(diǎn),直線
為雙曲線
的一條漸近線.
(1)求雙曲線
的方程;
(2)過點(diǎn)
的直線
交雙曲線
于
、
兩點(diǎn),交
軸于
點(diǎn)(
點(diǎn)與
的頂點(diǎn)不重合),當(dāng)
,且
,求
點(diǎn)的坐標(biāo).
【答案】(1)
;(2)![]()
【解析】
(1)根據(jù)雙曲線的焦點(diǎn)、漸近線方程、結(jié)合
列方程組,解方程組求得
的值,進(jìn)而求得雙曲線方程.
(2)設(shè)出直線
的方程和
兩點(diǎn)的坐標(biāo),求得
點(diǎn)坐標(biāo),利用
和
,結(jié)合向量共線的坐標(biāo)運(yùn)算,求得
①,通過聯(lián)立直線方程和雙曲線方程,寫出韋達(dá)定理并代入①,由此求得直線的斜率,進(jìn)而求得
點(diǎn)坐標(biāo).
(1)依題意可知:橢圓
焦點(diǎn)坐標(biāo)為
,故雙曲線
的半焦距為
.由于雙曲線的漸近線為
,故
,結(jié)合
可解得
.故雙曲線方程為
.
(2)由題意知直線
的斜率
存在且不等于零,設(shè)直線
的方程為
,
,則
,因?yàn)?/span>
,所以
,所以
,同理
,所以
,即
①,又
以及
,消去
得
.當(dāng)
時,直線
與雙曲線的漸近線平行,不合題意,所以
.由韋達(dá)定理有
,代入①得
,
,所以所求
點(diǎn)的坐標(biāo)為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們在求高次方程或超越方程的近似解時常用二分法求解,在實(shí)際生活中還有三分法.比如借助天平鑒別假幣.有三枚形狀大小完全相同的硬幣,其中有一假幣(質(zhì)量較輕),把兩枚硬幣放在天平的兩端,若天平平衡,則剩余一枚為假幣,若天平不平衡,較輕的一端放的硬幣為假幣.現(xiàn)有 27 枚這樣的硬幣,其中有一枚是假幣(質(zhì)量較輕),如果只有一臺天平,則一定能找到這枚假幣所需要使用天平的最少次數(shù)為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某溫室大棚規(guī)定,一天中,從中午12點(diǎn)到第二天上午8點(diǎn)為保溫時段,其余4小時為工作作業(yè)時段,從中午12點(diǎn)連續(xù)測量20小時,得出此溫室大棚的溫度y(單位:度)與時間t(單位:小時,
)近似地滿足函數(shù)
關(guān)系,其中,b為大棚內(nèi)一天中保溫時段的通風(fēng)量。
(1)若一天中保溫時段的通風(fēng)量保持100個單位不變,求大棚一天中保溫時段的最低溫度(精確到0.1℃);
(2)若要保持一天中保溫時段的最低溫度不小于17℃,求大棚一天中保溫時段通風(fēng)量的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-
x3+2x2+2x,若存在滿足0≤x0≤3的實(shí)數(shù)x0,使得曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線與直線x+my-10=0垂直,則實(shí)數(shù)m的取值范圍是( )
A. [6,+∞)B. (-∞,2]
C. [2,6]D. [5,6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大數(shù)據(jù)時代對于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學(xué)方法來代入某條數(shù)式的表示方式,比如
,![]()
,2,
,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)
來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列
比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)
的擬合誤差為:
.已知平面直角坐標(biāo)系上5個點(diǎn)的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 |
| 4 |
| 12 |
若用一次函數(shù)
來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差
的最小值,并求出此時的函數(shù)解析式
;
若用二次函數(shù)
來擬合題干表格中的數(shù)據(jù),求
;
請比較第
問中的
和第
問中的
,用哪一個函數(shù)擬合題目中給出的數(shù)據(jù)更好?
請至少寫出三條理由![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且過點(diǎn)
,若點(diǎn)
在橢圓C上,則點(diǎn)
稱為點(diǎn)M的一個“橢點(diǎn)”.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試判斷
的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,且函數(shù)
為偶函數(shù)。
(1)求
的解析式;
(2)若方程
有三個不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,其中
為自然對數(shù)的底數(shù),
.
(1)求證:
;
(2)若對于任意
,
恒成立,求
的取值范圍;
(3)若存在
,使
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
是
的兩個非空子集,如果存在一個函數(shù)
滿足:①
;② 對任意
,當(dāng)
時,恒有
,那么稱這兩個集合為“
到
的保序同構(gòu)”,以下集合對不是“
到
的保序同構(gòu)”的是( )
A.
B.
,![]()
C.
,
D.
,![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com