【題目】某條公共汽車線路收支差額
與乘客量
的函數關系如下圖所示(收支差額=車票收入-支出費用),由于目前本條線路虧損,公司有關人員提出了兩條建議:建議(1)不改變車票價格,減少支出費用;建議(2)不改變支出費用,提高車票價格.下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數關系,則( )
![]()
A.①反映建議(2),③反映建議(1)B.①反映建議(1),③反映建議(2)
C.②反映建議(1),④反映建議(2)D.④反映建議(1),②反映建議(2)
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0,
)作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP,ON交于點A,B,其中O為原點.
(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;
(Ⅱ)求證:A為線段BM的中點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的焦點和上頂點分別為
,定義:
為橢圓
的“特征三角形”,如果兩個橢圓的特征三角形是相似三角形,那么稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比,已知點
是橢圓
的一個焦點,且
上任意一點到它的兩焦點的距離之和為4
(1)若橢圓
與橢圓
相似,且
與
的相似比為2:1,求橢圓
的方程.
(2)已知點
是橢圓
上的任意一點,若點
是直線
與拋物線
異于原點的交點,證明:點
一定在雙曲線
上.
(3)已知直線
,與橢圓
相似且短半軸長為
的橢圓為
,是否存在正方形
,(設其面積為
),使得
在直線
上,
在曲線
上?若存在,求出函數
的解析式及定義域;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為
(
),M為該曲線上的任意一點.
![]()
(1)當
時,求M點的極坐標;
(2)將射線OM繞原點O逆時針旋轉
與該曲線相交于點N,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓
的左、右頂點分別為A、B,雙曲線
以A、B為頂點,焦距為
,點P是
上在第一象限內的動點,直線AP與橢圓相交于另一點Q,線段AQ的中點為M,記直線AP的斜率為![]()
為坐標原點.
![]()
(1)求雙曲線
的方程;
(2)求點M的縱坐標
的取值范圍;
(3)是否存在定直線
使得直線BP與直線OM關于直線
對稱?若存在,求直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知在長方體
中,
,點
為
上的一個動點,平面
與棱
交于點
,給出下列命題:
![]()
①四棱錐
的體積為
;
②存在唯一的點
,使截面四邊形
的周長取得最小值
;
③當
點不與
,
重合時,在棱
上均存在點
,使得
平面![]()
④存在唯一一點
,使得
平面
,且![]()
其中正確的命題是_____________(填寫所有正確的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓
,圓
,動圓P與圓M外切并且與圓N內切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設不經過點
的直線l與曲線C相交于A,B兩點,直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com