【題目】在平面直角坐標系
中,已知定點
,點
在
軸上運動,點
在
軸上運動,點
為坐標平面內的動點,且滿足
,
.
(1)求動點
的軌跡
的方程;
(2)過曲線
第一象限上一點
(其中
)作切線交直線
于點
,連結
并延長交直線
于點
,求當
面積取最小值時切點
的橫坐標.
科目:高中數學 來源: 題型:
【題目】對于函數
,若存在實數
,使
成立,則稱
為
的不動點.
(1)當
,
時,求
的不動點;
(2)若對于任何實數
,函數
恒有兩相異的不動點,求實數
的取值范圍;
(3)在(2)的條件下,若
的圖象上
、
兩點的橫坐標是函數
的不動點,且直線
是線段
的垂直平分線,求實數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,兩焦點與短軸的一個端點的連線構成的三角形面積為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設與圓O:
相切的直線l交橢圓C于A,B兩點(O為坐標原點),求△AOB面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,
,直線l與橢圓C交于P,Q兩點,且點M滿足
.
(1)若點
,求直線
的方程;
(2)若直線l過點
且不與x軸重合,過點M作垂直于l的直線
與y軸交于點
,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,
平面PCD,
,
,
,E為AD的中點,AC與BE相交于點O.
![]()
(1)證明:
平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com