【題目】已知函數
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
【答案】(1)
,
;(2)見解析
【解析】試題分析:(1)求出函數的導數,得到關于
的方程組,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用導數研究其單調性可得
,
從而證明
.
試題解析:((1)由題意
,所以
,
又
,所以
,
若
,則
,與
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
當
時,
,
單調遞減,且
;
當
時,
,
單調遞增;且
,
所以
在
上當單調遞減,在
上單調遞增,且
,
故
,
故
.
【點睛】本題考查利用函數的切線求參數的方法,以及利用導數證明不等式的方法,解題時要認真審題,注意導數性質的合理運用.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系
中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標方程;
(2)在曲線
上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
科目:高中數學 來源: 題型:
【題目】近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.
(1)大氣污染可引起心悸、呼吸困難等心肺疾病. 為了解某市心肺疾病是否與性別有關,在某醫院隨機的對入院50人進行了問卷調查得到了如下的列聯表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
問有多大的把握認為是否患心肺疾病與性別有關?
(2)空氣質量指數PM2.5(單位:μg/
)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴重. 某市在2016年年初著手治理環境污染,改善空氣質量,檢測到2016年1~5月的日平均PM2.5指數如下表:
月份x | 1 | 2 | 3 | 4 | 5 |
PM2.5指數y | 79 | 76 | 75 | 73 | 72 |
試根據上表數據,求月份x與PM2.5指數y的線性回歸直線方程
,并預測2016年8月份的日平均PM2.5指數 (保留小數點后一位).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某零售店近5個月的銷售額和利潤額資料如下表:
商店名稱 |
|
|
|
|
|
銷售額 | 3 | 5 | 6 | 7 | 9 |
利潤額 | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關關系;
(2)用最小二乘法計算利潤額
關于銷售額
的回歸直線方程;
(3)當銷售額為4千萬元時,利用(2)的結論估計該零售店的利潤額(百萬元).
[參考公式:
,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族
中的成員僅以自駕或公交方式通勤.分析顯示:當
中
(
)的成員自駕時,自駕群體的人均通勤時間為
(單位:分鐘),而公交群體的人均通勤時間不受
影響,恒為
分鐘,試根據上述分析結果回答下列問題:
(1)當
在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族
的人均通勤時間
的表達式;討論
的單調性,并說明其實際意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足:a1=2,且a1 , a2 , a5成等比數列.
(1)求數列{an}的通項公式;
(2)記Sn為數列{an}的前n項和,是否存在正整數n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,
是平行四邊形,
,
為
的中點,且有
,現以
為折痕,將
折起,使得點
到達點
的位置,且![]()
![]()
(1)證明:
平面
;
(2)若四棱錐
的體積為
,求四棱錐
的側面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com