已知函數(shù)
,其中
是自然對(duì)數(shù)的底數(shù),
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若
,求
的單調(diào)區(qū)間;
(3)若
,函數(shù)
的圖象與函數(shù)
的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)
的取值范圍.
(1)
;(2)當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
,
,單調(diào)遞增區(qū)間為
;當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
;當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
,
,單調(diào)遞增區(qū)間為
;(3)
.
【解析】
試題分析:(1) 利用導(dǎo)數(shù)的幾何意義求切線的斜率,再求切點(diǎn)坐標(biāo),最后根據(jù)點(diǎn)斜式直線方程求切線方程;(2)利用導(dǎo)數(shù)的正負(fù)分析原函數(shù)的單調(diào)性,注意在解不等式時(shí)需要對(duì)參數(shù)的范圍進(jìn)行討論;(3)根據(jù)單調(diào)性求函數(shù)的極值,根據(jù)其圖像交點(diǎn)的個(gè)數(shù)確定兩個(gè)函數(shù)極值的大小關(guān)系,然后解對(duì)應(yīng)的不等式.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122310002125754906/SYS201312231007091428291818_DA.files/image014.png">,
所以![]()
,
所以曲線
在點(diǎn)
處的切線斜率為
.
又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122310002125754906/SYS201312231007091428291818_DA.files/image019.png">,
所以所求切線方程為
,即
. 2分
(2)![]()
,
①若
,當(dāng)
或
時(shí),
;當(dāng)![]()
時(shí),
.
所以
的單調(diào)遞減區(qū)間為
,
;
單調(diào)遞增區(qū)間為
. 4分
②若
,![]()
,
所以
的單調(diào)遞減區(qū)間為
.
5分
③若
,當(dāng)
或
時(shí),
;當(dāng)
時(shí),
.
所以
的單調(diào)遞減區(qū)間為
,
;
單調(diào)遞增區(qū)間為
. 7分
(3)由(2)知函數(shù)
在
上單調(diào)遞減,在
單調(diào)遞增,在
上單調(diào)遞減,
所以
在
處取得極小值
,在
處取得極大值
.
8分
由
,得
.
當(dāng)
或
時(shí),
;當(dāng)![]()
時(shí),
.
所以
在
上單調(diào)遞增,在
單調(diào)遞減,在
上單調(diào)遞增.
故
在
處取得極大值
,在
處取得極小值
. 10分
因?yàn)楹瘮?shù)
與函數(shù)
的圖象有3個(gè)不同的交點(diǎn),
所以
,即
. 所以
.
12分
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.切線方程;3.利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性4.分類討論;5.極值6.零點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)已知函數(shù)
(其中
是自然對(duì)數(shù)的底數(shù),
為正數(shù))
(I)若
在![]()
處取得極值,且
是
的一個(gè)零點(diǎn),求
的值;(II)若
,求
在區(qū)間
上的最大值;(III)設(shè)函數(shù)
在區(qū)間
上是減函數(shù),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東華附、省高三上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)
,其中![]()
是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)
的零點(diǎn);
(2)若對(duì)任意![]()
均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間
內(nèi),另一個(gè)在區(qū)間
外,
求
的取值范圍;
(3)已知
且函數(shù)
在
上是單調(diào)函數(shù),探究函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年北京市西城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,其中
是自然對(duì)數(shù)的底數(shù),
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省石家莊市高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知函數(shù)
,其中
是自然對(duì)數(shù)的底數(shù),
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若
,求
的單調(diào)區(qū)間;
(3)若
,函數(shù)
的圖象與函數(shù)
的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com