已知存在實(shí)數(shù)
使得不等式
成立,則實(shí)數(shù)
的取值范圍是 .
![]()
解析試題分析:由題意借助數(shù)軸,
可知
,
∵存在實(shí)數(shù)
使得不等式
成立,∴
,解得實(shí)數(shù)
的取值范圍是
.
考點(diǎn):本小題主要考查絕對(duì)值不等式的解法,考查學(xué)生轉(zhuǎn)化問(wèn)題的能力和運(yùn)算求解能力.
點(diǎn)評(píng):求解本題的關(guān)鍵是正確理解題意,區(qū)分存在問(wèn)題與恒成立問(wèn)題的區(qū)別,本題是一個(gè)存在問(wèn)題,解決的是有的問(wèn)題,故取
,即小于等于左邊的最大值即滿足題意,本題是一個(gè)易錯(cuò)題,主要錯(cuò)誤就是出在把存在問(wèn)題當(dāng)成恒成立問(wèn)題求解,因思維錯(cuò)誤導(dǎo)致錯(cuò)誤.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
三位同學(xué)合作學(xué)習(xí),對(duì)問(wèn)題“已知不等式
對(duì)于
恒成立,求
的取值范圍”提出了各自的解題思路. 甲說(shuō):“可視
為變量,
為常量來(lái)分析”; 乙說(shuō):“不等式兩邊同除以
2,再作分析”; 丙說(shuō):“把字母
單獨(dú)放在一邊,再作分析”.參考上述思路,或自已的其它解法,可求出實(shí)數(shù)
的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若關(guān)于x的不等式2-
>|x-a| 至少有一個(gè)負(fù)數(shù)解,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com