【題目】某城市城鎮(zhèn)化改革過程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的統(tǒng)計(jì)數(shù)據(jù):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
居民生活用水量(萬噸) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年居民生活用水量與年份之間的回歸直線方程y=bx+a;
(2)根據(jù)改革方案,預(yù)計(jì)在2020年底城鎮(zhèn)化改革結(jié)束,到時(shí)候居民的生活用水量將趨于穩(wěn)定,預(yù)計(jì)該城市2023年的居民生活用水量.
參考公式:
.
【答案】
(1)解:
=2013,
=
=260.2,
=(﹣2)×(﹣24.2)+(﹣1)×(﹣14.2)+0+1×15.8+2×25.8=130.
=4+1+0+1+4=10.
∴b=
=13,
∴回歸方程為y﹣260.2=13(x﹣2013),即y=13(x﹣2013)+260.2.
(2)解:當(dāng)x=2020時(shí),y=13(2020﹣2013)+260.2=351.2(萬噸).
答:該城市2023年的居民生活用水量預(yù)計(jì)為351.2萬噸.
【解析】(1)根據(jù)回歸系數(shù)公式計(jì)算回歸系數(shù),得出回歸方程;(2)由于到2020年用水量趨于穩(wěn)定,故2023年的用水量約等于2020年的用水量,把x=2020代入回歸方程求出用水量的估計(jì)值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若
,求函數(shù)
在區(qū)間
上的最大值;
(3)若
在區(qū)間
上恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=
為R的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( )
A.(0,+∞)
B.[﹣1,0)
C.(﹣2,0)
D.(﹣∞,﹣2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,動(dòng)點(diǎn)M到點(diǎn)F(1,0)的距離與它到直線x=2的距離之比為
.
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)設(shè)直線y=kx+m(m≠0)與曲線E交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn)(且C,D在A,B之間或同時(shí)在A,B之外).問:是否存在定值k,對(duì)于滿足條件的任意實(shí)數(shù)m,都有△OAC的面積與△OBD的面積相等,若存在,求k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求
的單調(diào)區(qū)間;
(2)若
在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱
中,
平面
,
,
,
,
,
為
的中點(diǎn).
![]()
(Ⅰ)求四棱錐
的體積;
(Ⅱ)設(shè)點(diǎn)
在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長度;
(Ⅲ)判斷線段
上是否存在一點(diǎn)
,使得
?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組銷售數(shù)據(jù)
,如下表所示:
![]()
(已知
,
).
(1)求出
的值;
(2)已知變量
具有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(件)關(guān)于試銷單價(jià)
(元)的線性回歸方程
;(3)用
表示用正確的線性回歸方程得到的與
對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)
的殘差的絕對(duì)值
時(shí),則將銷售數(shù)據(jù)
稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)數(shù)據(jù)中至少有1個(gè)是“好數(shù)據(jù)”的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com