【題目】已知函數f(x)=x3+3x2﹣9x+m
(1)求函數f(x)=x3+3x2﹣9x+m的單調遞增區間;
(2)若函數f(x)在區間[0,2]上的最大值12,求函數f(x)在該區間上的最小值.
【答案】
(1)解:f′(x)=3x2+6x﹣9=3(x+3)(x﹣1),
令f′(x)>0,得x>1或x<﹣3;
令f′(x)<0,得﹣3<x<1.
∴函數f(x)的增區間為:(﹣∞,﹣3),(1,+∞)
(2)解:由(1)知,f′(x)=3x2+6x﹣9=3(x+3)(x﹣1),
令f′(x)=0,得x=1或x=﹣3(舍).
當x在閉區間[0,2]變化時,f′(x),f(x)變化情況如下表
x | 0 | (0,1) | 1 | (1,2) | 2 |
f′(x) | ﹣ | 0 | + | ||
f(x) | m | 單調遞減 | m﹣5 | 單調遞增 | 2+m |
∴當x=2時,f(x)取最大值f(x)max=f(2)=m+2,由已知m+2=12,得m=10.
當x=1時,f(x)取最小值f(x)min=f(1)=m﹣5=5
【解析】(1)求出函數的導函數,直接由導函數大于0求解不等式得答案;(2)由(1)可得f(x)在(0,2)上的單調性,求得極值,再求出f(0)、f(2)比較得答案.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間
內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減,以及對函數的最大(小)值與導數的理解,了解求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在
市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為
市使用共享單車情況與年齡有關?
(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;
(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式:
,其中
.
參考數據:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)當a>1時,求證:函數f(x)在(0,+∞)上單調遞增;
(Ⅱ)若函數y=|f(x)﹣t|﹣1有三個零點,求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,試求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com