【題目】已知向量
,
,函數(shù)
的最小值為![]()
(1)當(dāng)
時,求
的值;
(2)求
;
(3)已知函數(shù)
為定義在R上的增函數(shù),且對任意的
都滿足![]()
問:是否存在這樣的實數(shù)m,使不等式
+
對所有![]()
恒成立,若存在,求出m的取值范圍;若不存在,說明理由.
【答案】(1)
;(2)
;(3)見解析
【解析】
(1)把
,代入相應(yīng)的向量坐標(biāo)表示式,然后,利用向量數(shù)量積的坐標(biāo)表示,化簡函數(shù)解析式即可;
(2)轉(zhuǎn)化成二次函數(shù)問題,對對稱軸的位置與區(qū)間
進(jìn)行討論;
(3)利用函數(shù)
為定義在R上的函數(shù),得到
,然后,再根據(jù)函數(shù)的單調(diào)性,轉(zhuǎn)化成
,最后,利用換元法
,轉(zhuǎn)化成
,求解函數(shù)
在
上的最大值為3,從而解決問題.
(1)
令
,
,則![]()
當(dāng)
時,![]()
(2)
,![]()
![]()
(3)易證
為
上的奇函數(shù)
要使
成立,
只須
,
又由
為單調(diào)增函數(shù)有
,
令
,則
,
![]()
原命題等價于
對
恒成立;
,即
.
由雙勾函數(shù)知
在
上為減函數(shù),
時,原命題成立
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系
中,已知橢圓
的離心率為
,左右焦點分別為
和
,以點
為圓心,以
為半徑的圓與以點
為圓心,以
為半徑的圓相交,且交點在橢圓
上.
(
)求橢圓
的方程.
(
)設(shè)橢圓
,
為橢圓
上任意一點,過點
的直線
交橢圓
于
、
兩點,射線
交橢圓
于點
.
①求
的值.
②求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)X表示所取3張卡片上的數(shù)字的中位數(shù),求X的分布列與數(shù)學(xué)期望.(注:若三個數(shù)字a,b,c滿足a≤b≤c,則稱b為這三個數(shù)的中位數(shù).)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,x1 , x2∈(0,
),且x1<x2 , 則下列結(jié)論中正確的是( )
A.(x1﹣x2)[f(x1)﹣f(x2)]<0
B.f(
)<f(
)
C.x1f(x2)>x2f(x1)
D.x2f(x2)>x1f(x1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C:
(a>b>0),動直線l與橢圓C只有一個公共點P,且點P在第一象限.
(Ⅰ)已知直線l的斜率為k,用a,b,k表示點P的坐標(biāo);
(Ⅱ)若過原點O的直線l1與l垂直,證明:點P到直線l1的距離的最大值為a﹣b.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中, 平面
平面
,
.
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值;
(3)在棱
上是否存在點
,使得
平面
?若存在, 求
的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓
上任取一點
,過點
作
軸的垂線段
,
為垂足.
,當(dāng)點
在圓上運動時,
(1)求
點的軌跡
的方程;
(2) 若
,直線
交曲線
于
、
兩點(點
、
與點
不重合),且滿足
.
為坐標(biāo)原點,點
滿足
,證明直線
過定點,并求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
圖象上一點
處的切線方程為
.
(
)求
,
的值.
(
)若方程
在區(qū)間
內(nèi)有兩個不等實根,求實數(shù)
的取值范圍.(
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某煤礦發(fā)生透水事故時,作業(yè)區(qū)有若干人員被困.救援隊從入口進(jìn)入之后有L1,L2兩條巷道通往作業(yè)區(qū)(如下圖),L1巷道有A1,A2,A3三個易堵塞點,各點被堵塞的概率都是
;L2巷道有B1,B2兩個易堵塞點,被堵塞的概率分別為
,
.
![]()
(1)求L1巷道中,三個易堵塞點最多有一個被堵塞的概率;
(2)若L2巷道中堵塞點個數(shù)為X,求X的分布列及均值E(X),并按照“平均堵塞點少的巷道是較好的搶險路線”的標(biāo)準(zhǔn),請你幫助救援隊選擇一條搶險路線,并說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com